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1. SUMMARY 

Domestic dogs (Canis familiaris) have turned out to be one of the most common carnivoran 

species in natural ecosystems worldwide, becoming a major concern for wildlife conservation, 

particularly on islands. Here, we assessed the effect of infrastructure and the environment on the 

occupancy probability of free-ranging dogs on Navarino Island, Cape Horn Biosphere Reserve, 

southern Chile. We collected camera-trap data from 200 sites in a grid around the only major 

settlement of Navarino Island. Single-season, single species occupancy modeling was used to 

assess the impact of five infrastructure variables and two environmental variables on the 

occupancy of free-ranging dog and of six variables on the probability of detection. A total of 4,000 

camera-trap days yielded 67 independent photo sequences of free-ranging dogs. Our results 

provided support for the hypothesis that environmental variables had the most influence on 

occupancy, when compared to infrastructure variables, while Julian date, survey and animal trail 

density were the most important predictor variables for detection probability. Free-ranging dogs 

preferred open habitats instead of forests and habitats at lower elevations. The photographic 

records further showed interaction between owned/unowned and feral free-ranging dogs as well 

as reproduction in feral dogs. Dogs were slightly more active at day than at night. Results of the 

present study demonstrated that there is an urgent need to implement management 

measurements in order to reduce the numbers of free-ranging dogs in the Cape Horn Biosphere 

Reserve. 

 

Keywords: biological invasion; camera traps; Canis familiaris, exotic species; subsidized predator 
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2. INTRODUCTION 

Domestic dogs have a cosmopolitan distribution (Aliaga-Rossel et al. 2012), currently being the 

most abundant carnivore species on earth (Wandeler et al. 1993; Gompper 2014). The global 

population of domestic dogs has been estimated to be more than 900 million dogs in sympatry 

with men, equivalent to a 10:1 humand:dog ratio (Hughes and Macdonald 2013; Gompper 2014). 

In ecosystems where they have become the most abundant carnivore species (Torres and Prado 

2010; Krauze-Gryz et al. 2012; Paschoal et al. 2012, 2016; Wierzbowska et al. 2016), they 

produce important disturbances for people and wildlife (WHO and WSPA 1990). 

There is evidence that free-ranging dogs negatively impact wildlife (reviews in Young et al. 2011; 

Hughes and Macdonald 2013) through harassment (Butler et al. 2004; Atickem et al. 2010; Torres 

and Prado 2010), and predation (Lacerda et al. 2009; Margalida and Campión 2009; Weber 2010; 

Aliaga-Rossel et al. 2012). They also hybridize (Green and Gipson 1994; Sillero-Zubiri et al. 2004; 

Hughes and Macdonald 2013; Lescureux and Linnell 2014) and compete with wild native 

carnivores  (Vanak and Gompper 2009a, 2010; Atickem et al. 2010). Free-ranging dogs are also 

capable of transmitting disease to wild native carnivores (Roelke-Parker et al. 1996; Cleaveland 

et al. 2000; Acosta-Jamett 2009). Furthermore, Doherty et al. (2017) demonstrated the extinction 

of 11 vertebrate species worldwide, as well as the potential threat of 188 species globally, due to 

free-ranging dogs. Free-ranging dogs also negatively affect human public health (WHO and 

WSPA 1990; Vaniscotte et al. 2011; Macpherson et al. 2013; Van Kesteren et al. 2013) and 

livestock producers (Bergman et al. 2009; González et al. 2012; Sepúlveda et al. 2014a; 

Wierzbowska et al. 2016). Vanak & Gompper (2009) described six categories for the association 

of domestic dogs with men (Table 1). They vary from owners that have a complete control of their 

pet dogs (owned dog: they receive all basic care from their owners and their movements are 

restricted; all other stray dogs are considered free-ranging), till becoming or being totally feral, 

being able to survive without supplemental provisioning from people (feral dogs).  
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Table 1. Categories for association of domestic dogs with men (adapted from Vanak and 
Gompper 2009a) and their application to the present study. 

Category Description Present study 

Owned dogs Owned dogs confined to a 
defined outdoor or indoor 
area 

Owned pet dog 

Urban free-ranging dogs Unowned dogs that are 
commensals, subsisting on 
garbage and other human 
derived foods as their primary 
food source (Beck 1974) 

Does not apply 

Rural free-ranging dogs Owned dogs or dogs 
associated with human 
households, but not confined 
to a defined outdoor area 

Free-ranging owned dog 

Village dogs Unconfined dogs that are 
associated with rural 
households, but rarely leave 
the immediate vicinity of the 
village (Vanak 2008) 

Free-ranging unowned dog 

Feral dogs Dogs that are completely wild 
and independent of human 
derived materials as food 
sources (Green and Gipson 
1994) 

Free-ranging feral dog 

Wild dogs Dingoes, feral dogs and their 
hybrids in Southeast Asia and 
Australasia with a history of 
independence from humans 
and no longer considered 
domesticated (Sillero-Zubiri 
et al. 2004) 

Does not apply 

 

Surveying terrestrial mammals can be particularly challenging due to their elusive nature, the fact 

that they often occur at low densities and in many cases, are difficult to distinguish individually 

(O’Connell et al. 2011). Noninvasive survey methods enable researchers to study such animals 

across large areas (Long et al. 2007). Technological advances and continued innovation have 

increased the use of camera-traps for the passive detection of carnivores (Gompper et al. 2006; 

O’Connell et al. 2011). Occupancy models have proven to be especially useful when studying 

cryptic and rare species, particularly when other variables, such as abundance become less 

reliable or impossible to estimate, due to poor data and a low probability of detection (Mackenzie 

et al. 2006; O’Connell et al. 2006; Linkie et al. 2007). Camera-trapping can be effective for 

surveying free-ranging dogs (Marks and Duncan 2009). However, camera-trapping studies 

investigating the ecology of free-ranging dogs are still scarce (Srbek-Araujo and Chiarello 2008; 
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Paschoal et al. 2012, 2016; Parsons et al. 2016). This same trend seems to replicate in Chile, with 

only two camera-trapping studies on the ecology of free-ranging dogs (Silva-Rodríguez and 

Sieving 2012; Moreira-Arce et al. 2015).  

The population growth of free-ranging dogs has become a great public issue in the last decade 

(Bonacic and Abarca 2014), although human:dog ratios are lower than the global estimate  

(Hughes and Macdonald 2013; Gompper 2014). Based on the previously cited studies (Acosta-

Jamett et al. 2010; López et al. 2012; Silva-Rodríguez and Sieving 2012), the Chilean overall dog 

population is composed by approximately  4,059,200 individuals (Gompper 2014). Free-ranging 

dogs in Chile affect several mammals classified as Least Concern, Near Threatened, Vulnerable 

and Endangered by the International Union for Conservation of Nature (IUCN) Red List: culpeo 

fox (Lycalopex culpaeus, Least Concern, CONAF 2012), grey fox (L. griseus, Least concern, Silva-

Rodriguez and Sieving 2011; Sepúlveda et al. 2014a), guanaco (Lama guanicoe, Least Concern, 

González 2005; CONAF 2012), southern pudu (Pudu puda, Near Threatened, Silva-Rodríguez et 

al. 2009; CONAF 2012), guiña (Leopardus guigna, Vulnerable, Sepúlveda et al. 2014a) and 

patagonian huemul (Hippocamelus bisulcus, Endangered, Corti et al. 2010; CONAF 2012). Free-

ranging dogs in Chile are also transmitters of canine distemper and parvovirus, impacting 

populations of grey foxes (González-Acuña et al. 2003; Acosta-Jamett 2009; Acosta-Jamett et al. 

2010, 2011) and river otters (Lontra provocax, Endangered, Sepúlveda et al. 2014b). 

Free-ranging dogs are also present in South America’s southernmost ecoregion (Anderson 2014). 

In the Cape Horn Biosphere Reserve (CHBR) invasive mammal species outnumber their native 

counterparts (Anderson et al. 2006). Despite of the biocultural importance of this last wilderness 

area (Mittermeier et al. 2003; Rozzi 2015), information and research on invasive species is mainly 

focused on beavers (Castor canadensis) (e.g. Anderson et al. 2009) and American mink 

(Neovison vison) (e.g. Schüttler et al. 2010; Crego et al. 2016). Up to date, there is almost no 

information about free-ranging dogs. Anderson et al. (2006) provide some records of free-ranging 

dogs on some islands within the CHBR. Although guanacos are classified as Least Concern by 

the IUCN Red List, they have suffered a significant population decline on Navarino Island due to 

multiple causes (González et al. 2002). González (2005) reported fishermen observing free-

ranging dog packs attacking and frequently predating upon groups of guanacos (L. guanicoe) on 

Navarino Island, CHBR (Figure 1) and Schüttler et al. (2009) found waterfowl nests destroyed by 

dogs, particularly of flightless steamer ducks (Tachyeres pteneres), an endemic Patagonian duck. 

Finally, almost half of 138 dogs registered by the Cape Horn Municipality’s veterinarian program 

in Puerto Williams, a village located on the northern coast of Navarino Island, did not have any 

kind of restriction (Llanos 2013). 
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Figure 1. Dog awaiting a guanaco to attack it in Bahía Douglas, Navarino Island, southern 
Chile (Source: González 2005, © Denis Chevally). 

 

The general aim of this study is to estimate occupancy of free-ranging dogs on Navarino 

Island, in a grid around Puerto Williams, the major human settlement in the CHBR. The 

influence of infrastructure and habitat on the occupany of free-ranging dogs was specifically 

investigated. Another aim was to identify and count individuals of free ranging dogs with 

respect of their categorization of human association (Table 1) within a gradient of more to less 

human disturbances in the study area. 
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Figure 2.  Map of the Cape Horn Biosphere Reserve (CHBR), modified from Anderson et al. (2006), showing opportunistic 
monitoring of free-ranging dogs
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3.  OBJECTIVES 

2.1 General objective: 

To estimate occupancy of free-ranging dogs in a grid around the major human settlement on 

Navarino Island. 

 

2.2 Specific objectives: 

• Establish the influence of human infrastructure in relation to free-ranging dog occupancy 

in the study area. 

• Determine which kind of habitat are preferred by free-ranging dogs in the study area, and 

discuss further implications for biodiversity conservation. 

• Identify and count individuals of free ranging dogs with respect of their categorization of 

human association. 
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4. MATERIALS AND METHODS 

4.1 Study Area 

The Cape Horn Biosphere Reserve (CHBR) is located at South America’s southern tip and 

belongs to  Magallanes XIIth Region (provinces of Tierra del Fuego and Chilean Antarctic), (Rozzi 

et al. 2006, Figure 2). This reserve consists of an archipelago composed by hundreds of islands, 

with an approximate total extension of 4,884,274 ha divided into 1,917,238 ha of terrestrial area 

and 2,967,036 ha of marine area (CONAF 2017). The Cape Horn insular lands ecosystems form 

part of the Subpolar (or Subantarctic) Evergreen Rain Forest ecoregion (Rozzi et al. 2004b, 2007). 

The main habitats include evergreen and deciduous forests mainly composed by Nothofagus 

betuloides, N. pumilio and Drimys winteri (Rozzi et al. 2004a), peatbogs (Sphagnum spp.), high 

Andean habitats, glaciers and snowfields (Pisano 1977). 

The core areas of the CHBR include the Alberto d’Agostini and Cape Horn National Parks, which 

are administered by the National Forestry Corporation (CONAF) (Rozzi et al. 2004b, 2007; 

Anderson 2014). The buffer areas of the CHBR include the Yendegaia National Park. Puerto 

Williams, on Navarino Island, is a village located in the Cape Horn Biosphere Reserve (CHBR) 

and counts 2,932 inhabitants (IMCH 2015). Besides, a small fisher town (Puerto Toro) exists on 

the eastern coast of Navarino, as well as seven farms (Santa Rosa, Lum, Guerrico, La Estrella, 

Róbalo, Chaparral and Eugenia) on the northern coast of Navarino Island. 

The main economic activities in the province are artisanal fishing, ecotourism and extensive 

livestock production (Jofré 2006). The CHBR infrastructure is scarce, with only one dirt road that 

connects the northern coast of Navarino Island. The interior of the island must be reached by the 

three existing trekking trails, and western, southern and eastern coasts rely on marine transport 

(Schüttler et al. 2009). 

The present study was conducted in a 62.39 km2 grid (Figure 3) around Puerto Williams covering 

different types of habitat and human intervention (infrastructure). 

 

4.2 Methodology 

4.2.1 Sampling design 

A 200 cells grid with 700 m distance between each grid point was designed, using QGIS Software 

(Version 2.18.7, QGIS Development Team 2017). Home ranges of free-ranging dogs have been 

described to vary between 0.4 (Vanak and Gompper 2010; Dürr et al. 2017) and 20.6 km2 (Atickem 

et al. 2010). Site independency could therefore not be ensured spatially, but it was checked 

whether the same dog appeared in different cameras during one sampling occasion (in the course 
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of one day) which did not happen. Due to logistic constraints, the sampling points did not surpass 

300 meters above sea level (masl), neither did they exceed 4 km from the northern coast. The 

200 cells were equally distributed on both sides (100 east and 100 west) of Puerto Williams (Figure 

3), since free-ranging dogs are assumed to be concentrated around this town. 

 

4.2.1 Camera traps 

Fifty remote cameras (Bushnell Outdoor Products, Overland Park, KS, USA) were installed during 

four subsequent rotations of 20 days each in order to monitor 200 sampling sites between October 

2016 and January 2017. We assumed that this time frame was of sufficient length such that the 

species was either always present or always absent from the sites or changes occurred randomly, 

i.e. a closed season (Mackenzie et al. 2006). Each camera was equipped with a passive infrared 

sensor and an integrated infrared flash (Long et al. 2008). Thus, camera avoidance by animals 

and risk of theft is considerably reduced compared to a visible flash. The camera was integrated 

in a single black or camouflaged box, which could be easily handled and fixed to trees or branches. 

 An average of 6.25 camera traps (range 3-7) were installed per day in < 100 m radius around 

each grid point and coordinates were recorded using a Garmin® Global Position System (GPS) 

device. The placement of camera traps was decided opportunistically, privileging places near 

cattle trails, trekking trails and open areas, where the probability that free-ranging dogs transit 

might be higher than in dense vegetation (Sepúlveda et al. 2015). Camera traps were tied up to 

trees at an approximate height of 50 cm above ground (Figure 4), which was considered to be a 

proper height to photograph free-ranging dogs (Moreira-Arce et al. 2015). The surveyor adjusted 

the right angle of the camera lens and assured a stable camera position. To test the correct 

adjustment and positioning of the motion sensor and its area covered before the final activation, 

the test modus of the camera was run and test photos were taken while the observer was walking, 

crawling, or waving at different distances or heights in front of the camera (Long et al. 2008). To 

improve detection probability, an olfactory attractant (perforated tuna can, Figure 5) was added in 

a 2-5 m distance in focus of the camera (Andelt and Woolley 1973; Thorn et al. 2009). 

Camera traps were set to shoot three photographs per 30 seconds during the first rotation. 

However, considering that this yielded a low number of photographs per individual for its further 

identification, we switched to three photographs per one second for the following 3 rotations. 

Permits to work on private lands and those administered by the Chilean Navy were acquired with 

anticipation. 

The detection histories of camera traps were recorded using a binary code in which 1 counted as 

detections and 0 as non-detections within 20 occasions. Nevertheless, sampling occasions were 
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reduced from 20 to 10 by collapsing data of two consecutive occasions into one. Ten occasions 

generated reliable estimates of detection probability by reducing the 0 : 1 ratio (Gálvez et al. 2013; 

Fleschutz et al. 2016). Minimizing zero in the data stabilizes the numerical algorithms used in 

occupancy modeling (Sunarto et al. 2012). 
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Figure 3. Sampling sites for camera-trapping on Navarino Island, southern Chile. The grid 
contains 200 sampling sites with a distance of 700 m in between and was restricted to < 300 masl 
and < 4 km distance to the coast (due to logistical constraints). 
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Figure 4. Map of habitat type categories of Navarino Island, southern Chile, used in the present study. 
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Figure 5. Camera trap installation in different types of habitats on Navarino Island, southern 
Chile. Camera trap installed in forest habitat, tied up to a lenga beech (A), camera trap installed 
in grassland habitat, tied up to an Antarctic beech (B), camera trap installed in peatbog habitat, 
tied up to a vertical log (C), olfactory attractant (canned tuna, D). 

 



20 
 

4.2.2 Data Preparation and Cartography 

Landscape scale metrics were measured within circular 500 m buffers around each camera trap. 

This buffer size was used following Moreira-Arce et al. (2015) who deployed this buffer on a 

landscape level when estimating road density for subsequent free-ranging dog occupancy 

calculation. Land use shapefiles (UNT 2016) classified the habitat of the study area into ten 

categories: coastal (shore of Navarino Island with sand and rocks), deciduous forest, evergreen 

forest, mixed forest, pastures, peatbogs, semidense forest, shrubland, succession bog and 

transition bog. Google EarthTM (Google Inc. 2017) satellite images were used to reduce those 

categories to three: (i) forest (comprising deciduous forest, evergreen forest, mixed forest, 

semidense forest), (ii) peatbogs (comprising peatbogs, succession bog and transition bog) and 

(iii) shrubland (comprising coastal, pastures and shrubland). Roads and trails were GPS-tracked 

in the field and edited using the BaseCamp® Software (Garmin Ltd. 2017). Those impossible to 

be tracked in the field due to having a very large extension were traced in QGIS using Google 

EarthTM (Google Inc. 2017) satellite images. The seven existing farms along the northern coast of 

Navarino Island were included into data analyses since free-ranging dogs from these farms could 

theoretically enter the grid (Schüttler et al. unpublished data). All further geoprocessing was done 

using QGIS (Version 2.18.7, QGIS Development Team 2017). 

 

4.2.1 Data processing of photographs of free-ranging dogs 

To quantify owned, unowned, and feral free-ranging dogs in the study area, a photographic 

catalogue of free-ranging dogs in Puerto Williams from 2015/16 (Schüttler et al., unpublished 

data), was used to classify the photos taken by the camera traps into owned or unowned free-

ranging dogs and supposedly feral dogs. As feral dogs were classified those absent in the 

photographic catalogue, but without knowing whether those dogs were truly feral (i.e., surviving 

without any human food provisioning including the garbage dump). This photographic catalogue 

was updated during the sampling period, in which the surveyor walked through the streets of 

Puerto Williams for four random days, taking pictures of all free-ranging dogs sighted and then 

classifying them into different categories, according to the association of domestic dog with men 

(Table 1). Afterwards, free-ranging dogs photographed by camera traps were divided into those 

three categories (Table 1, third, fourth and fifth categories). Then, the total number of identified 

individuals were counted per category. 
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4.2.1 Anaylsis of daylight activity patterns 

The daylight activity pattern of free-ranging dogs was analyzed following Sepúlveda et al. (2015), 

dividing the photoperiod in 4 categories: dawn (±1 h around sunrise), day (between dawn and 

dusk), dusk (±1 h around sunset) and night (between dusk and dawn). Sunset and sunrise times 

were adjusted depending on the date registered for each photographic sequence. A Chi-square 

test was performed to check whether there were significant differences in the daylight activity 

pattern among free-ranging (owned and unowned) dogs and feral dogs. 

 

4.2.2 Hypotheses for model construction 

The identification of suitable predictor variables for occurence of free-ranging dogs was guided by 

two general hypotheses regarding infrastructure and environmental variables (Table 2). H1- 

Infrastructure, the presence of owned and unowned free-ranging dogs is usually associated to 

human settlements (Acosta-Jamett et al. 2010; Silva-Rodriguez et al. 2010; Gompper 2014; 

Morters et al. 2014; Villatoro et al. 2016), habitually feeding upon human discarded food and 

garbage (Pal 2003; Campos et al. 2007; Vanak 2008; Vanak and Gompper 2009b; Atickem et al. 

2010; Dias et al. 2013) and using trails and roads to access wild habitats (May and Norton 1996; 

Fiorello et al. 2006; Silva-Rodríguez et al. 2009; Silva-Rodriguez et al. 2010; Doherty et al. 2015; 

Moreira-Arce et al. 2015; Sepúlveda et al. 2015; Parsons et al. 2016); H2-Environment, free-

ranging dogs prefer open habitats such as savannas, pastures and shrublands, since they offer 

little if any resistance to movement, compared to forest habitat, which can act as a clear barrier to 

the movement of free-ranging dogs (Meek 1999; Vanak 2008; Lacerda et al. 2009; Vanak and 

Gompper 2010; Sepúlveda et al. 2015). Open habitats like coastal grounds also harbor several 

species of waterbirds (Schüttler et al. 2009; Couve et al. 2016), while during fieldwork, livestock 

could be frequently observed in other types of open habitats like pastures, birds and cattle might 

be possible prey for free-ranging dogs. 

The following variables were analysed to test whether infrastructure had a positive effect on the 

occupancy of free ranging dogs (H1- Infrastructure) : distance from Puerto Williams, distance 

from the nearest farm, distance from the garbage dump, distance from the nearest road/trail and 

road and trail density (Table 2). 

To test whether the environment influences the occupancy of free-ranging dogs (H2-

Environment). The variables habitat category and height above sea level were analysed (Table 

2). Height was included as an additional variable because the pronounced altitudinal gradient in 

the study area could affect dog occurrence due to possible altitudinal gradients in prey abundance 

and human activity (Patterson et al. 1989). 
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Table 2. Summary of all potential predictor variables for occupancy (ψ) and detection probability (p). 

Predictor variables Abbreviation Level Unit Description References 

Ψ, p 

 

     

H1-Infrastructure 

 

     

Distance from Puerto 

Williams 

dist.PW local meter Euclidean distance from 

the core center of Puerto 

Williams  

Negative association of the presence 

of free-ranging dogs with distance to 

human settlements (Srbek-Araujo 

and Chiarello 2008; Soto and 

Palomares 2015) 

Distance from the 

nearest farm 

dist.farm local meter Euclidean distance from 

the nearest farm 

Negative association of the presence 

of free-ranging dogs with distance to 

farm houses (Silva-Rodriguez et al. 

2010). 

Distance from the 

garbage dump 

dist.gdump local meter Euclidean distance from 

the core center of the 

garbage dump 

Free-ranging dogs are usually found 

near garbage dumps (Pal 2003; 

Campos et al. 2007; Vanak 2008; 

Vanak and Gompper 2009b; Atickem 

et al. 2010; Dias et al. 2013) 

Distance from the 

nearest road/trail 

dist.road.trails local meter Euclidean distance from 

the nearest road or trail 

Negative association of the presence 

of free-ranging dogs with distance 

from the nearest road (Silva-
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Predictor variables Abbreviation Level Unit Description References 

Rodriguez et al. 2010; Soto and 

Palomares 2015). 

Road and trail 

density 

road.trail.dens landscape meter/ha Total road and trail 

length, within landscape 

extent (500 m buffer) 

Positive association of the presence 

of free-ranging dogs with road 

density (Moreira-Arce et al. 2015). 

H2-Environment      

Habitat type habitat landscape categorical Predominant habitat 

type within the 500m 

buffer 

Positive association between the 

presence of free-ranging dogs with 

open habitats such as savannas, 

pastures, and shrublands, based on 

radiotelemetry locations (Vanak and 

Gompper 2010; Sepúlveda et al. 

2015),. 

Height height local meter Altitude above sea level Negative association between height 

and occupancy of guiña, lesser 

grison (Galictis cuja), culpeo fox, 

Darwin’s fox (Lycalopex fulvipes), 

cougar (Puma concolor) and skunk 

(Conepatus chinga) (Moreira-Arce et 

al. 2015). 

p      

Animal trail density dens.antrails local steps/m2 Total steps when 

walking along all animal 

Not available 
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Predictor variables Abbreviation Level Unit Description References 

trails within a 10 m 

radius from the camera 

trap. 

Julian date julian.date temporal numerical Time specific variable 

(start date 01.01.2016) 

Positive trend on guiña detection 

probability with Julian date 

(Fleschutz 2013), while it seemed to 

have no effects on the detection 

probability of the Red fox (Vulpes 

vulpes, Sarmento et al. 2011) 

Number of animal 

trails 

n.animtrails local number/m2 Total animal trails 

counted within a 10 m 

radius from the camera 

trap 

Not available 

Rotation survey temporal numerical Four consecutive 

rotations 

No proved effects in the detection 

probability of the guiña (Fleschutz 

2013) 

Understory density underst.dens local numerical  Understory density 

visibility index, values go 

from 0 to 10. 

Negative influence of understory 

density on detection probability in 

Darwin’s fox, cougar and skunk 

(Moreira-Arce et al. 2015).Whereas, 

guiña presence has a positive 

association with understory density 
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Predictor variables Abbreviation Level Unit Description References 

(Acosta-Jamett and Simonetti 2004; 

Fleschutz et al. 2016) 
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4.2.3 Survey specific covariates 

Occupancy modeling (MacKenzie et al. 2006) was used to analyse the presence-absence data 

with each camera representing one site. There are several assumptions that should be met for 

occupancy modeling (MacKenzie et al. 2006): (1) occupancy status at each site does not change 

during the sampling season; that is, sites are "closed" to changes in occupancy; (2) the probability 

of occupancy is constant across the sites, or differences in the probability of occupancy are 

modeled using covariates; (3) probability of detection is constant between sites and samples, or 

is a function of site-specific covariates; there is no heterogeneity not modeled in detection 

probabilities and (4) species detection and detection histories at each location are independent. 

For modeling detection probability, the following variables were included: animal trail density, 

Julian date, number of animal trails, survey and understory density (Table 2). Density and number 

of animal trails could potentially influence the detectability of free-ranging dogs as higher density 

and number of animal trails could increase detection probability of free-ranging dogs. Julian date 

was used as a variable to determine whether time specific effects on detection probability exist 

(Urban and Swihart 2009; Sarmento et al. 2011). To improve the assessment of season specific 

sampling effects, Julian Date was modified in such way that the day count started with the date 

January 1st 2016 (jd=0). Like that, Julian Date of the first sampling day (October 11th 2016) was 

284, while the last sampling day (Febraury 9th 2017) was 404. Survey was defined as the four 

independent consecutive sampling rotations which could have an effect on detection, i.e., later 

rotations could raise the detection probability due to an accumulated experience of the surveyor 

in the field. Understory density could potentially influence the detectability of free-ranging dogs as 

higher understory density could prevent detection. It was estimated using Robel pole’s technic 

(Robel et al. 1970; Toledo et al. 2008). A 1.5 m banded plastic pole with 5 cm width intercalated 

white bands was placed randomly within a 10 m radius from the camera trap and visual obstruction 

was assessed, counting the visible bands from two different random points at a 4 m distance from 

the pole. These two measurements were then pooled. 

  



27 
 

4.2.4 Data exploration 

4.2.4.1 Descriptive statistics 

Predictor variables for detection and occupancy were examined to detect whether distribution was 

normal, as well as presence of outliers and collinearity among detection and occupancy covariates 

separately (Zuur et al. 2009). Statistical calculations were performed using the software program 

R 3.4.1 (R Core Team 2017).  

 

4.2.4.2  Data normality analysis 

Histograms, boxplots, scatter plots and standardized residuals q-q plots were made to test data 

normality. Histograms were made to check data skewness, boxplots were made to check for 

outliers, standardized residuals q-q plots were made to check data homoscedasticity (Zuur et al. 

2009). On the other hand, histogram and bar plots of categorical variables were made to visualize 

distributions among classes. Shapiro-Wilk tests were then applied to test data normality. 

 

4.2.4.3 Collinearity among metric variables  

Occupancy and detection covariates were checked for collinearity, i.e., the existence of linearly 

related correlation between covariates (Zuur et al. 2009; Dormann et al. 2013). Correlated metrics 

probably measure the same aspects of a landscape pattern (O’Neill et al. 1996). Correlations 

among metric variables were tested using a Pearson correlation matrix (r) when data distributed 

normally, or a Spearman correlation matrix (roh) when covariates lacked data normality. The 

correlation analysis was done separately for detection probability and occupancy predictor 

variables. In this study, the threshold of correlation coefficients between predictor variables was 

r/roh > |0.7| (Lantschner et al. 2012) considering that above this value, collinearity severely distort 

model estimation and subsequent prediction (Dormann et al. 2013). If this was the case, one of 

the variable pair was excluded from the analysis, while keeping the variable with higher biological 

importance, accuracy and ease of interpretation. 

 

4.2.4.4 Differences of detected/undetected data for predictor variables 

Significant differences of predictor variables mean according to detection (detected/undetected) 

data were checked using different statistical tests. The two-sample Wilcoxon’s rank-sum was used 

for non-normal distributed predictor variables (Zar 2010). While, the Student’s t-test was used for 

normal distributed predictor variables (Crawley 2007). Differences of metric continuous variables 

among detection data (detected/undetected), were illustrated through boxplots made for each 

predictor numeric variable. 
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4.2.4.5 Differences of detected/undetected data for categorical variables 

In order, to test for significant differences of detection data (detected/undetected) among 

categorical variables (survey and habitat), the Analysis of Variance (ANOVA) test was used for 

normal distributed detection data, while the Kruskal-Wallis test was used for non-normal 

distributed detection data. P-values of Kruskal-Wallis tests were adjusted according to Bonferroni 

if required (df ≥ 3) (Crawley 2007). 

 

4.2.4.6 Variance Inflation Factor (VIF) estimation 

We might expect VIF > 1 with real data, but would not expect VIF to exceed 4, if model structure 

is acceptable and only overdispersion is affecting VIF (Burnham and Anderson 2002). 

Substantially larger values of VIF (say, 6-10) are usually caused partly by a model structure that 

is inadequate; that is, the fitted model does not account for an acceptable amount of variation in 

the data (Burnham and Anderson 2002). When data are overdispersed and VIF > 1, the proper 

likelihood is log(L)/VIF (not just log(L)) (Burnham and Anderson 2002). The estimated 

overdispersion parameter should generally be 1≤ c ≤ 4. Otherwise, some structural lack of fit is 

probably entering the estimate of overdispersion (Burnham and Anderson 2002).  

 

4.2.4.7  Data transformation of metric variables to z-scores 

Metric variables data were transformed to z-scores ([𝑥 − 𝑥]̌/𝑠𝑑), prior to occupancy modeling 

(Sunarto et al. 2012; Moreira-Arce et al. 2015). Normalized non-categorical data improves model 

convergence (Moreira-Arce et al. 2015), avoiding failure by the numerical optimization algorithm 

used in occupancy modeling (White and Burnham 1999). Furthermore, data transformation 

reduces the effect of outliers, stabilizes the variance and linearizes relationships (Zuur et al. 

2009). 

 

4.2.5 Occupancy models 

Single-season, single-species occupancy models were run (Mackenzie et al. 2006) using the R-

package Unmarked (Fiske and Chandler 2015) of the R Environment (R Core Team 2017). During 

sampling we considered that two processes occurred: occupancy (ψ) and detection (p). The 

likelihood based approach of these models introduced by MacKenzie et al. (2002) allows 

estimating the probability of occupancy and detection probability simultaneously. Occupancy 

refers to the presence or absence of species at sites during the sampling period (MacKenzie et 

al. 2006). Detection probability is an aspect of study/sampling protocols that will generally be 

considered as a noise parameter (MacKenzie et al. 2006). It is natural to consider heterogeneous 
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detection probability models for site occupancy, because factors that influence detectability are 

many and varied, and it may not be possible to identify, much less control all of them (MacKenzie 

et al. 2006). Site and survey factors can be included in occupancy modeling as covariates even 

for sites where individuals of the target species have not been detected (Mackenzie et al. 2002). 

One of the main differences to other approaches is that MacKenzie et al. (2002) distinguishes if a 

species is truly absent from a site, during a survey season or if it is present at the site, but simply 

not detected by the surveyor or surveying methods. Another advantage is that occupancy models 

take into account heterogenous detection probabilities within calculations (MacKenzie et al. 2006). 

Thus, model inference is more accurate for occupancy and detectability when modeled as 

functions of predictor variables, and inference for elusive species is highly improved (Mackenzie 

et al. 2002). The usual bias of detection plain count data is reduced by including detection 

probability within the estimates, so non-detection of a species is now modeled as a function of 

detection probability, which may vary between zero and one (Fleschutz 2013). A detection history 

(hi) consists then of the sequence of detections (1) and non-detections (0) of the target species 

during K samplings of site i (Mackenzie et al. 2006).  

 

4.2.5.1 Modeling site covariates 

Heterogeneous occupancy probability was considered for different sampled sites, this parameter 

can be modeled as a function of site specific characteristics (Mackenzie et al. 2006). Similarly, 

detection probability is allowed to vary among sites or surveys, as a function of site or survey 

specific covariates (Mackenzie et al. 2006). Some forms of detection heterogeneity may be 

accounted for with covariate information, such as site characteristics or environmental conditions 

at the time of sampling (Mackenzie et al. 2002). Both occupancy and detection heterogeneity are 

important to incorporate within models, since unmodeled heterogeneity will introduce bias into 

parameter estimates (Mackenzie 2005). This covariate information can be easily introduced to the 

model using a logit function (Mackenzie et al. 2002, 2006). 

The purpose of the logit function is to estimate the beta coefficients (β) instead of 𝜓̂ or 𝑝̂ 

(MacKenzie et al. 2006). This allows one to estimate the logit of 𝜓̂ or 𝑝̂ as a linear function with 

values ranging from ±∞ (Donovan and Hines 2007). The logit function can be expressed by the 

following equation: 

𝑙𝑜𝑔𝑖𝑡(𝜃𝑖) = 𝑙𝑛 (
𝜃𝑖

1 − 𝜃𝑖
) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑈𝑥𝑖𝑈 

where θi is the parameter of interest (𝜓̂ or 𝑝̂) for the ith sampling unit and xi1, xi2,..., xiU, are the 

values for the U covariates of interest measured at the ith sampling unit. The regression coefficients 
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β1, β2,..., βU determine the effect of the respective covariates, and β0 is the intercept term 

(MacKenzie et al. 2006; Donovan and Hines 2007). While the probability of 𝜓̂ or 𝑝̂ can now vary 

among sites, the beta coefficients are still assumed to be constant across all sites (MacKenzie et 

al. 2006). In addition, note that if θi is modeled only as a function of β0 (i.e., if there are no 

covariates in the model), then θi=θ for all sites (MacKenzie et al. 2006). Beta coefficients give 

information on the directionality and magnitude of the effect of covariates on 𝜓̂ or 𝑝̂, and are 

relatively easy to interpret (Donovan and Hines 2007). After incorporating the beta coefficients 

into the estimates, these remain constant for all sites, allowing 𝜓̂ or 𝑝̂ to vary among sites 

(MacKenzie et al. 2006).  

Estimates of linear combinations back-transformed to their original scale may be more interesting 

than direct linear combinations (Fiske and Chandler 2011). This is accomplished by back-

transforming logits of 𝜓̂ or 𝑝̂ to probabilities bound between 0 and 1 for every site (Donovan and 

Hines 2007). Standard errors of back-transformed estimates of 𝜓̂ or 𝑝̂ can be also estimated using 

the delta method (Fiske and Chandler 2011, 2015). Thus, the linear function (logit) is converted 

back to probabilities (logit link) (Mackenzie et al. 2006): 

𝜃(𝜓 𝑜𝑟 𝑝) =
exp (𝑙𝑜𝑔𝑖𝑡 𝜓 𝑜𝑟 𝑝)

1 + exp(𝑙𝑜𝑔𝑖𝑡 𝜓 𝑜𝑟 𝑝)
 

If 𝜓̂ is modeled as a function of covariates, the average species presence probability is 

represented by the following equation: 

𝜓̅̂
∑ 𝜓̂𝑁

𝑖=1

𝑁
 

where N represents the number of all surveyed sites (Mackenzie et al. 2002). 

Precision of models for 𝜓̂ were obtained following Linkie et al. (2006) as 𝑆𝐸̂/𝜓̂ × 100. 

 

4.2.5.2 Missing observations 

Not being able to monitor all sites on all proposed occasions for a target species is a common 

issue during fieldwork in many wildlife studies (MacKenzie and Bailey 2004). However, these 

sampling inconsistencies can be easily accommodated using the proposed model likelihood 

(Mackenzie et al. 2002). Sites with unique combinations of missing values each, must be regarded 

as separate cohorts to account for missing observations (MacKenzie and Bailey 2004). Site 

specific covariates can still be included within occupancy and detection estimates for not surveyed 

sites (Mackenzie et al. 2002). Survey specific covariates can be included within the analyzes only 

if the site was surveyed during the corresponding occasion (Mackenzie et al. 2002) 
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4.2.5.3 Model Fitting 

A two-step ad hoc approach was used to determine which covariates (Table 2) best predicted 

occupancy and detection of free-ranging dogs in the study area (MacKenzie et al. 2006; Soto and 

Palomares 2015; Fleschutz et al. 2016). In a first step, the best fitting predictor variables for 

detection probability were determined, while occupancy was held constant ψ(.). In the second 

step, occupancy was modeled, while the selected variables of detection probability were constant. 

Additionally, one covariate interaction of biological interest (habitat:height), was included within 

this step. Habitat:height interaction was included into occupancy models because low altitude 

open habitats might be easily reached by free-ranging dogs, when compared with high closed 

habitats. All possible covariate combinations for detection probability modeling, as well as for 

occupancy modeling, were analyzed through data dredging, using package MuMIn (Bartón 2017) 

from the R Environment (R Core Team 2017). 

 

4.2.5.4 Information-theoretic model selection approach: Akaike’s Information 

Criterion (AIC) 

The best model fit was assessed through ranking by AIC (Burnham and Anderson 2002). The AIC 

is based on the estimate of the expected distance between the Kullback-Leibler (K-L) best model 

and the fitted model (Burnham and Anderson 2002). For every model the AIC was calculated, the 

model with the lowest AIC was assumed to be the best fitted model, which is assumed to be the 

“closest” to the true underlying reality (Burnham and Anderson 2002). The AIC equation is showed 

below, where K is the number of estimable parameters in the approximating model and the 

maximized log likelihood is [log(L(θ|y)] (Burnham and Anderson 2002): 

AIC = -2log[L(𝜃|y)] + 2K. 

The AIC calculations relies on parsimony, i.e., best fitted models tend to be those with the least 

number of parameters (Burnham and Anderson 2002). The AIC tradeoff between underfitting (few 

variables) and overfitting is essential to the principle of parsimony, where the AIC equation first 

term on the right (-2log[L(𝜃|y)]) tends to decrease as more variables are added to the model, 

whereas the second term (2K) tends to increase as more parameters are added (Burnham and 

Anderson 2002).  

The value of AIC alone does not give any kind of information, so it must be compared with other 

AIC values from all candidate models in the set, this difference can be quantified between the best 

ranked model (ΔAIC = 0) and any given model from the set (Burnham and Anderson 2002). Simple 

differences of AIC values allow estimates of 𝐸𝜃̂[𝐼(𝑓, 𝑔𝑖)] − 𝑚𝑖𝑛 𝐸𝜃̂[𝐼(𝑓, 𝑔𝑖)], where the expectation 

is over the estimated parameters, and min is over the models. The larger the difference between 
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AIC values, the less plausible it is that the fitted model 𝑔𝑖(𝑥|𝜃) is the K-L best model, given the 

data x (Burnham and Anderson 2002). These differences are known as delta AIC (ΔAIC). 

ΔAIC ≤ 2 values give a substantial level of empirical support of estimated models, ΔAIC values 

between 4-7 have considerably less support and ΔAIC > 10 have essentially no support  (Burnham 

and Anderson 2002). These ΔAIC values are easy to interpret and allow a quick comparison and 

ranking of candidate models, and are also useful in computing Akaike weights (Burnham and 

Anderson 2002). 

Model weights (wi) were calculated to evaluate which of the candidate models was clearly superior 

to some of the others in the set (Burnham and Anderson 2002). Contrary, multi-model inference 

was used when there was model selection uncertainty, i.e. no single model with wi > 0.9, (Burnham 

and Anderson 2002; Johnson and Omland 2004; Urban and Swihart 2009). Therefore, a set of 

confidence models were considered to represent the scientific hypotheses of interest by selecting 

those with better empirical support, i.e. only models with ΔAIC ≤ 2.0 (Burnham and Anderson 

2002). If 𝜃 ( 𝜓̂ or 𝑝̂) differs noticeably across models then it is risky to base prediction on only one 

selected model, hence obvious possibility is to compute a weighted estimate of the predicted 

value, weighting the predictions by the Akaike weights (wi) (Burnham and Anderson 2002). Model 

averaged estimates can be expressed by this equation: 

𝜃̂̅ = ∑ 𝑤𝑖

𝑅

𝑖=1

𝜃𝑖 

Where 𝜃̂̅ = model averaged estimate of θ (ψ or p) and wi = recalculated AIC weights (∑ 𝑤𝑖 = 1) for 

each model (Burnham and Anderson 2002). The theoretical, unconditional sampling variance of 

the estimator of 𝜃̂̅ is given by (Burnham and Anderson 2002; MacKenzie et al. 2006): 

𝑉𝑎𝑟 (𝜃𝐴) = [∑ 𝑤𝑟

𝑅

𝑟=1

√𝑉𝑎𝑟(𝜃𝑟|𝑔𝑟) + (𝜃𝑟 − 𝜃𝐴)2]

2

 

Relative importance of predictor variables for ψ or p can be better estimated by summing the 

Akaike weights across all the models in the set where variable j occurs (Burnham and Anderson 

2002). Therefore, the relative importance of variable j is reflected in the sum w+(j)., where as w+(j) 

increases the more important variable j becomes relative to the rest of the variables. Akaike 

weights of each model that contained variable j, were summed w+(j ) (Burnham and Anderson 

2002). Covariates were then ranked according to their relative importance (Burnham and 

Anderson 2002). Estimated beta coefficients (𝛽̂) for confidence model set (ΔAIC ≤ 2.0) were used 

to investigate magnitude and directionality (±) of the effect of the given covariate on 𝜓̂ or 𝑝̂. 

Furthermore, untransformed covariate values were plotted against the logit link function of  𝑝̂ and 
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𝜓̂ to visualize covariate influence trends on detection and occupancy of free-ranging dogs. R 

MuMIn package (Bartón 2017) was used for Multi-Model Inference analysis. 

 

4.2.6 Capture-Recapture (CR) models 

To estimate the abundance of free-ranging dogs in the study area, capture-recapture (CR) 

methods were supposed to be used (Williams et al. 2002; O’Connell et al. 2011; Paschoal et al. 

2012; Belsare and Gompper 2013). Closed population models use requires that three 

assumptions must be fulfilled (O’Connell et al. 2011): (1) the population is closed to processes of 

birth, death, immigration and emigration; (2) there should be no loss of marking methods during 

the study; (3) and the sources of variation in the probability of detection must be properly identified 

and calculated. 

Spatially explicit CR (SECR) models are a set of CR animal data modeling methods (Efford 2016). 

These methods are mainly used to estimate population density, but also have advantages over 

non-spatial methods when estimating population size (Efford 2016). SECR methods overcome 

border effects that are problematic in the conventional estimation of CR in animal populations (Otis 

et al. 1978). Primary data for SECR are: (i) the location of detectors (i.e., here camera traps) and 

(ii) known individuals detections on one or more sampling occasions (i.e., their detection histories) 

(Efford 2016). In this study, the photographed individuals of free-ranging dogs were recognized 

according to their phenotype.  
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5. RESULTS 

5.1 Camera traps 

Camera-trapping comprised 200 sample sites, for 20 days each, from October 11th 2016 to 

February 9th 2017. A total of 4,000 camera-trap days recorded 28 vertebrate species, from which 

19 were native and nine were introduced (Table 3). The most detected carnivore species in the 

study area was the American mink (Neovison vison), with at least 52 detections in 200 sampled 

sites. Meanwhile, the domestic dog was the second most detected carnivore species, with 27 

detections in 200 sampled sites. Naïve occupancy, defined as the proportion of sites that recorded 

at least one photograph of the target species (Tilker 2014), was 0.14 for free-ranging dogs. 

Camera trap sampling yielded 67 independent photo sequences triggered by 56 dogs. The 

photographic sequences were considered as independent, as long as they were separated by a 

minimum of 30 minutes between each other (Fleschutz 2013). From 56 dog records 25 individuals 

were identified as supposedly feral dogs, 17 individuals as owned free-ranging dogs, and six 

individuals as unowned free-ranging dogs. Dog individuals could be distinguished by their 

phenotypic traits; however, eight dogs remained unidentifiable. One female (supposedly feral dog) 

was identified with two of their lactating puppies. Another female dog (supposedly feral) had clear 

lactation signs (i.e., mammary glands hypertrophy, Figure A1). If our assumption is correct and 

those dogs do not rely on human food or shelter, then this is an indication of a reproducing 

population of feral dogs (as reported by the local community, Schüttler et al. unpublished data). 

Additionally, interaction between feral and owned free-ranging dogs could be recorded through 

camera trap images (Figure A2). The daylight activity pattern of free-ranging dogs was not 

statistically higher during the day (n = 29) than the night (n = 22, X2 = 2.36, df = 1, p-value = 0.13). 

Missing observations occurred (n = 91 times out of 4000 sampling occasions) due to failing 

batteries and technical problems with six camera traps. However, due to the pooling of camera 

trap histories, missing observations were reduced to n = 45 yielding a final data set of 1955 

sampling occasions. 
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Table 3. Vertebrate species according to their origin, registered by a camera trap survey on Navarino Island, southern Chile. 

Class Order Spanish common name English common name Scientific name Origin 

Birds Anseriformes Caiquén Upland Goose Chloephaga picta Native 
 

 Pato juarjual Crested duck Lophonetta specularioides Native 
 

 Quetru No Volador Flightless Steamer-Duck Tachyeres pteneres Native 

      

 Cathartiformes Jote de cabeza colorada Turkey vulture Cathartes aura Native 

      

 Charadriiformes Gaviota Dominicana Kelp Gull Larus dominicanus  Native 

 
 Perdicita Cordillerana 

Austral 
White-bellied Seedsnipe Attagis malouinus Native 

      

 
Falconiformes 

Carancho cordillerano del 
Sur 

White-throated Caracara Phalcoboenus albogularis Native 

  Tiuque Chimango Caracara Milvago chimango Native 

      

 Passeriformes Chercán Común House Wren Troglodytes aedon Native 

  Chincol Rufous-collared Sparrow Zonotrichia capensis Native 

  Churrete Común Dark-bellied Cinclodes Cinclodes patagonicus Native 

  Golondrina Chilena Chilean Swallow Tachycineta leucopyga Native 

  Loica Común Long-Tailed Meadowlark Sturnella loyca Native 

  Rayadito Thorn-tailed Rayadito Aphrastura spinicauda Native 

  Tordo Austral Blackbird Curaeus curaeus Native 

  Zorzal Austral Thrush Turdus falcklandii Native 

      

 Piciformes Carpintero Negro Magellanic Woodpecker Campephilus magellanicus Native 

 Psittaciformes Cachaña Austral Parakeet Enicognathus ferrugineus Native 

      

Mammals Artiodactyla Oveja Sheep Ovis orientalis aries Introduced 

 Artiodactyla Vaca Cow Bos taurus Introduced 

 Carnivora Gato Cat Felis catus Introduced 



36 
 

Class Order Spanish common name English common name Scientific name Origin 

 Carnivora Perro Dog Canis lupus familiaris Introduced 

 Carnivora Visón American mink Neovison vison Introduced 

      

 Cetartiodactyla Cerdo Pig Sus scrofa domesticus Introduced 

 Perissodactyla Caballo Horse Equus caballus Introduced 

      

 Rodentia Castor Beaver Castor canadensis Introduced 

 Rodentia Rata Almizclera Muskrat Ondatra zibethicus Introduced 

 
Rodentia Ratón de Hocico Amarillo 

Yellow-nosed Field 
Mouse 

Abrothrix xanthorhinus Native 
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5.2 Data exploration 

5.2.1 Descriptive Statistics 

5.2.1.1 Data normality analysis 

Results of the explorative statistics revealed that all numeric variables (n = 10) were not normally 

distributed. This is particularly important for the choice of the subsequent tests. Figure 6 gives a 

visual overview regarding data distribution, asymmetry and outliers. The variables distance from 

the nearest farm, distance from the nearest road/trail, height, Julian date, number of animal trails 

and road and trail density are skewed to the left, whereas understory density is skewed to the 

right. The boxplots and standardized residual plots illustrate that the distance from the nearest 

road/trail, height, road and trail density and understory density, each had few extreme values. 

These extreme values were checked and judged as correct estimates, which justifies keeping 

them within the subsequent analyzes. On the other hand, the Shapiro-Wilk test yielded that all 

continuous metric variables were not normally distributed (p<0.05, Table 4). 
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Figure 6. Distribution of continuous variables displayed in histograms, boxplots, scatter 
plots and q-q plots. 
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Table 4. Shapiro-Wilk normality test results for all metric continuous variables 

Shapiro-Wilk normality test 

Variables W p-value 

dens.antrails 0.98568 0.040 

dist.farm 0.95926 <0.001 

dist.PW 0.95358 <0.001 

dist.gdump 0.95879 <0.001 

dist.road.trails 0.82817 <0.001 

height 0.92553 <0.001 

julian.date 0.89279 <0.001 

n.animtrails 0.96005 <0.001 

road.trail.dens 0.71507 <0.001 

underst.dens 0.69962 <0.001 

 

5.2.1.2 Distribution of Categorical Variables 

The categorical data of the variable habitat type is displayed in bar plots to visualize distributions 

among classes. Unequal class sizes of habitat type are a result of landscape heterogeneity (Figure 

4). 

 

Figure 7. Distribution of presence data (detected/undetected) and the categorical variable 
habitat type shown as frequency of observations for each category. 
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5.2.1.3 Collinearity among metric variables 

Spearman’s correlation coefficients (roh) were calculated for all numeric variables, since they did 

not have a normal distribution. Figure 8 illustrates detection probability predictor variable pairs with 

strong positive or negative correlations (roh > |0.7|), while Figure 9 illustrates occupancy predictor 

variable pairs with strong positive or negative correlations (roh > |0.7|). All high correlations shown 

in Figure 8 andFigure 9 are significant at a 95% confidence level (p < 0.05). 

The detection predictor variables, animal trail density and number of animal trails were highly 

correlated (roh = -0.91). Meanwhile, the occupancy predictor variables distance from Puerto 

Williams and distance from garbage dump were also highly correlated (roh = -0.99), which can be 

explained because Puerto Williams and its garbage dump are located near each other, being 

separated by only 1.1 km. To avoid redundancy in variable content, number of animal trails was 

discarded from the analysis, while animal trail density was kept, even though the latter was not 

normally distributed (W = 0.98568, p = 0.04037). This decision was taken as the data distribution 

(e.g. lack of skewness and lack of extreme values) of animal trail density was more reliable when 

compared to number of animal trails. Likewise, the covariate distance from garbage dump was 

excluded, while distance to Puerto Williams was kept for analysis, due to its biological importance, 

since urban centers act as important source of food and shelter for free-ranging dogs (Morters et 

al. 2014; Villatoro et al. 2016). 
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Figure 8. Relation among continuous detection probability predictor variables with 
Spearman’s correlation coefficients (roh). 

 

Figure 9. Relation among continuous occupancy predictor variables with Spearman’s 
correlation coefficients (roh). 
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5.2.1.4  Differences of detected/undetected data for predictor variables 

Results of the Wilcoxon rank-sum test revealed that presence and absence data were significantly 

different (p < 0.05) with regard to distance from Puerto Williams, distance from the nearest 

road/trail, height, and road and trail density (Figure 10). However, results for distance from Puerto 

Williams should be assessed with caution, since the p-value (p = 0.046) is near the cut-off value. 
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Figure 10. Boxplot about detection data (detected/undetected) for metric continuous variables. Asterisks indicate significant 
differences between detected/undetected data (Two-sided Wilcoxon rank-sum test with continuity correction, * p < 0.01. ** p < 0.001)
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5.2.1.5 Differences of detected/undetected data for categorical variables 

The Kruskal-Wallis rank sum test with Bonferroni corrections did not indicate disparity between 

habitat types for detected/undetected data at the 0.05 significance level (X2 = 3.371, df = 2, p-

value = 0.185), neither for survey (X2 = 2.043, df = 3, p-value = 0.250). 

 

5.2.1.6 Variance Inflation Factor (VIF) estimation 

VIF values were calculated using a two-step approach. In a first step, VIF values were calculated 

for the whole variable set for detection and occupancy, respectively. And in a second step, after 

discarding strongly correlated variables (i.e., number of animal trails and distance from the 

garbage dump). VIF values were > 4 among the variable sets for strongly correlated variables 

(Table 5). However, after discarding number of animal trails for detection probability and distance 

from the garbage dump for occupancy VIF values ranged between 1-2 (Table 5). Therefore, data 

overdispersal was not present any more. 

 

Table 5. VIF values for detection probability and occupancy variables before and after 
discarding strongly correlated covariates.  

Variables VIF values with correlated 
variables 

VIF values without correlated 
variables 

Detection probability   

julian.date 1.036 1.023 

underst.dens  1.063 1.062 

dens.antrails 5.980 1.058 

n.animtrails 6.017 - 

   
Occupancy    

dist.farm 1.543 1.223 

height 1.550 1.443 

road.trail.dens 1.667 1.657 

dist.road.trails 1.951 1.692 

dist.gdump 51.816 - 

dist.PW  56.014 1.516 

 

5.2.1.7 Data transformation of metric variables to z-scores 

Continuous covariates should be transformed in a way that brings their values close to zero in 

order to improve or even enable numerical convergence of the maximum-likelihood routine (Kéry 

and Chandler 2012). In this study, all metric variables were transformed to z-scores prior to 

analysis as they were measured on different scales. 
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5.3 Occupancy models  

5.3.1 Detection probability modeling (first step) 

In a first step of analysis, models were fitted with constant occupancy and varying variables for 

detection probability ψ(.),p(cov1+cov2…+covn), i.e. animal trail density, Julian date, survey, and 

understory density. This yielded a total of 16 (24) possible models, including the constant model: 

ψ(.),p(.) (Table 6).The main interest of this approach was to identify the best predictors of detection 

probability, for further use in occupancy models. Detection probability was low and ranged 

between 0.02 and 0.03 (Table 6). As the best ranked model weight was low (wi = 0.39), multi-

model inference ranking was used, yielding (in order from most to least important): Julian date (Σwi 

=1.00), survey (Σwi = 1.00), animal trail density (Σwi = 0.45) and understory density (Σwi = 0.28). 

Thus, the most important predictor variable combination was julian.date+survey (Table 6). 

Incorporating these covariates to detection probability increased the occupancy probability by 7%, 

when comparing the best ranked multivariate detection probability model (𝜓̂ = 0.229, SE = 0.047) 

with the constant detection probability estimate (𝜓̂ = 0.155, SE= 0.029, Table 6).  

In contrary to a priori expectations, the time specific covariate Julian date had a negative influence 

(Figure 11) on the detection of free-ranging dogs (β1 = -11.54, SE = 3.030), suggesting that the 

detection probability decreased with the advancing season. Detection probability increased with 

latter surveys (survey 2: β2 = 8.58, SE = 2.79; survey 3: β3 = 20.60, SE = 5.38; survey 4: β4 = 

31.76, SE = 8.18), indicating that there might have been an improvement of field experience by 

the surveyor, in concordance with a priori expectations. As expected, a higher animal trail density 

increased the detection probability of free-ranging dogs (β2 = 0.258, SE= 0.203, Figure 11). 

Contrary to what was expected, understory density had a negative influence on the detection of 

free-ranging dogs, which diminished as the understory visibility index increased. However, 

understory density was a poor predictor variable for detection probability, since models containing 

this variable had a low weight (Σwi = 0.28). The direction of impact for all predictor variables was 

constant as prefixes of beta coefficients (β) of each variable were steady across all substantial 

models with ΔAIC ≤ 2.  

For further proceedings the second best ranked model: ψ(.),p(julian.date+dens.antrails+survey) 

was selected to model occupancy probability. This decision was taken as the ΔAIC between the 

first and second best ranked model was as low as 0.3 and keeping animal trail density in futher 

occupancy analysis would give a much clearer separation in occupancy model comparisons, since 

these three variables were good predictors for detection probability of free-ranging dogs. 
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Table 6. Estimated occupancy (𝝍̂) and detection probability (𝒑̂) of free-ranging dogs on 
Navarino Island, southern Chile. First step modeling, where occupancy was held constant in all 
models. Models were ranked according to Akaike’s Information Criterion (AIC). ΔAIC displays the 
difference between the AIC of a given model to the AIC of the lowest ranked model. W i represents 
the model weight, K the number of parameters in each model and SE the standard error. 
Covariates for detection probability and occupancy are given in parentheses. Dots indicate 
constants. 

Model K AIC ΔAIC wi 𝜓̂ (SE) 𝑝̂ (SE) 

ψ(.),p(julian.date+survey) 6 421.4 0.00 0.390 0.23 (0.04) 0.09 (0.02) 

ψ(.),p(julian.date+dens.antrails+survey) 7 421.7 0.34 0.329 0.24 (0.04) 0.09 (0.02) 

ψ(.),p(julian.date+survey+underst.dens) 7 423.2 1.87 0.153 0.23 (0.04) 0.09 (0.02) 

ψ(.),p(julian.date+dens.antrails+survey+underst.dens) 8 423.7 2.30 0.124 0.23 (0.05) 0.08 (0.02) 

ψ(.),p(survey+underst.dens) 6 432.2 10.82 0.002 0.19 (0.04) 0.13 (0.03) 

ψ(.),p(dens.antrails+survey+underst.dens) 7 434.0 12.57 0.001 0.19 (0.04) 0.13 (0.03) 

ψ(.),p(survey) 5 435.1 13.68 0.000 0.19 (0.04) 0.14(0.03) 

ψ(.),p(dens.antrails+survey) 6 436.5 15.12 0.000 0.19 (0.04) 0.13 (0.03) 

ψ(.),p(underst.dens) 3 436.6 15.19 0.000 0.16 (0.03) 0.19 (0.03) 

ψ(.),p(julian.date+underst.dens) 4 436.9 15.52 0.000 0.16 (0.03) 0.19(0.03) 

ψ(.),p(dens.antrails+underst.dens) 4 438.3 16.88 0.000 0.16 (0.03) 0.19 (0.03) 

ψ(.),p(julian.date+dens.antrails+underst.dens) 5 438.6 17.24 0.000 0.16(0.03) 0.18 (0.03) 

ψ(.),p(julian.date) 3 440.9 19.54 0.000 0.16 (0.03) 0.19 (0.03) 

ψ(.),p(.) 2 441.9 20.52 0.000 0.16 (0.03) 0.20 (0.03) 

ψ(.),p(julian.date+dens.antrails) 4 442.6 21.23 0.000 0.16 (0.03) 0.18 (0.03) 

ψ(.),p(dens.antrails) 3 443.7 22.29 0.000 0.16 (0.03) 0.19 (0.03) 
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 Figure 11. Estimates of detection probability (𝒑̂) plotted against the respective metric detection variable values.  
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5.3.2 Occupancy modeling (second step) 

In a second step, models were fitted with fixed detection probability covariates 

p(julian.date+dens.antrails+survey), and varying predictor variables for occupancy 

ψ(cov1+cov2+…+covn).The variables used for occupancy were habitat, height, distance from the 

nearest farm, distance from Puerto Williams, distance from the nearest road/trail, road and trail 

density and the interaction habitat:height, yielding a total of 80 possible models, including the 

constant model: ψ(.),p(julian.date+dens.antrails+survey) (Table A1). 

Accounting for detection probability yielded a higher estimate for occupancy (𝜓̂ = 0.16, without 

variables) than the naïve occupancy (𝜓̂ = 0.14). Incorporating covariates to occupancy increased 

the occupancy estimate by 76%, if we compare the best ranked occupancy model (𝜓̂ = 1.00, SE 

= 0.02) to the constant occupancy estimate (𝜓̂ = 0.24, SE= 0.05, Table A1). The set of confidence 

models (ΔAIC ≤ 2) revealed a detection probability with a narrow range (0.06-0.07), while for 

occupancy the range was rather broad (0.61-1.00,Table 7). As the best ranked model weight was 

low (wi = 0.14), multi-model inference ranking was used, yielding (in order from most to least 

important): habitat (Σwi = 1.00), height (Σwi = 1.00), distance from the nearest road/trail (Σwi = 0.69), 

habitat:height (Σwi = 0.50), distance from Puerto Williams (Σwi = 0.30), distance from the nearest 

farm (Σwi = 0.30) and road and trail density (Σwi = 0.28). Thus, the most important predictor variable 

combination for occupancy was dist.road.trails+habitat+height+habitat:height. Therefore, good 

predictor variables for free-ranging dog occupancy were: habitat, height, distance from the nearest 

road/trail and the interaction term between habitat and height, while poor predictor variables for 

free-ranging dog occupancy were: distance from Puerto Williams, distance from the nearest farm 

and road and trail density. 

As expected, sites in open habitats were more likely to be occupied than forest sites (peatbog and 

shrubland, β2 = 33.19, SE = 354.39 and β3 = 0.97, SE = 1.45 respectively). As previously proposed, 

height had a negative influence on the occupancy of free-ranging dogs (β4 = -3.74, SE = 1.14), 

which suggests that with higher altitudes occupancy probability decreases (see Figure 12, also for 

the following covariates). As predicted the interaction between habitat and height indicated that 

occupancy was higher in open low altitude habitats, like low altitude peatbogs (β5 = 56.62, SE = 

759.82), and low altitude shrublands (β6 = 1.75, SE = 1.65), when compared to high altitude closed 

habitats, like alpine forests. Contrary to what was expected, dogs had a higher probability to 

occupy sites farer away from roads and trails (β1 = 1.22, SE = 0.68). The direction of impact of all 

occupancy predictor variables, as well as the interaction between habitat and height, was constant 

as beta coefficients (β) of each variable were steady across all substantial models with ΔAIC ≤ 2. 
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Table 7. Estimated occupancy (𝝍̂) and detection probability (𝒑̂) of free-ranging dogs on Navarino Island, southern Chile. 
Models displayed here (ΔAIC ≤ 4) were based on standardized data and were ranked according to Akaike’s Information Criterion (AIC). 
ΔAIC displays the difference between the AIC of a given model to the AIC of the lowest ranked model. Wi represents the model weight, 
K the number of parameters in each model. Covariates for both occupancy and detection are given in parentheses.  

Models K AIC ΔAIC wi 𝜓̂ (SE) 𝑝̂ (SE) 

ψ(distRT+habitat+height+H:H), p(Jdate+denTrail+survey) 13 396.1 0.00 0.14 1.00 (0.02) 0.07 (0.02) 

ψ(distRT +habitat+height) , p(Jdate+denTrail+survey) 11 396.7 0.64 0.10 0.85 (0.15) 0.07 (0.02) 

ψ(habitat+height), p(Jdate+denTrail+survey) 10 397.3 1.24 0.07 0.62 (0.23) 0.07 (0.02) 

ψ(dFarm+ distRT +habitat+height+ H:H),p(Jdate+denTrail+survey) 14 397.7 1.56 0.06 1.00 (0.03) 0.06 (0.02) 

ψ(drTrails +habitat+height+rtDens+ H:H),p(Jdate+denTrail+survey) 14 397.9 1.83 0.06 0.83 (1.25) 0.07 (0.02) 

ψ(dPW+ distRT +habitat+height+ H:H),p(Jdate+denTrail+survey) 14 398.0 1.85 0.06 0.99 (0.68) 0.07 (0.02) 

ψ(dFarm+ distRT + H:H),p(Jdate+denTrail+survey) 12 398.3 2.22 0.05 0.88 (0.13) 0.06 (0.02) 

ψ(dPW+ distRT + H:H), p(Jdate+denTrail+survey) 12 398.5 2.41 0.04 0.86 (0.15) 0.06 (0.02) 

ψ(distRT +habitat+height+rtDens), p(Jdate+denTrail+survey) 12 398.5 2.44 0.04 0.85 (0.15) 0.07 (0.07) 

ψ(habitat+height+ H:H), p(Jdate+denTrail+survey) 12 398.6 2.53 0.04 0.17 (0.10) 0.08 (0.02) 

ψ(dPW+habitat+height), p(Jdate+denTrail+survey) 11 399.0 2.87 0.03 0.69 (0.35) 0.07 (0.02) 

ψ(dFarm+habitat+height), p(Jdate+denTrail+survey) 11 399.3 3.24 0.03 0.62 (0.24) 0.07 (0.02) 

ψ(habitat+height+rtDens), p(Jdate+denTrail+survey) 11 399.3 3.24 0.03 0.62 (0.24) 0.07 (0.02) 

ψ(dFarm+dPW+ distRT +habitat+height+ H:H), p(Jdate+denTrail+survey) 15 399.4 3.30 0.03 1.00 (0.00) 0.06 (0.02) 

ψ(dFarm+ distRT +habitat+height+rtDens+ H:H), p(Jdate+denTrail+survey) 15 399.6 3.51 0.02 1.00 (0.01) 0.07 (0.02) 

ψ(dPW+ distRT +habitat+height+rtDens+H:H), p(Jdate+denTrail+survey) 15 399.6 3.52 0.02 1.00 (0.01) 0.07 (0.02) 

ψ(dFarm+dPW+ distRT +habitat+height), p(Jdate+denTrail+survey) 13 399.8 3.65 0.02 0.92 8(0.11) 0.05 (0.02) 

dFarm: distance from de nearest farm; dPW: distance from Puerto Williams, denTrail: animal trail density; distRT: distance from the 
nearest road/trail; H:H: habitat:height interaction; Jdate: Julian date; rtDens: road and trail density. 
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Figure 12. Estimates of site occupancy (𝝍̂) plotted against the respective metric occupancy variable values.
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5.4 Capture-Recapture (CR) models 

CR models could not be run due to the relatively high number of unidentified individuals (n = 8), 

which not allowed meeting the CR model assumption regarding individuals should not lose their 

marks, considering unidentified individuals in the present study could be eventual recaptures. 

Therefore, these analyses were discarded for the present study. 
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6. DISCUSSION 

Primary drivers of occupancy of free-ranging dogs were environmental variables, not variables 

describing infrastructure.These findings do not match similar studies on owned and unowned free-

ranging dogs, where infrastructure variables were the primary drivers to explain occupancy 

(Srbek-Araujo and Chiarello 2008; Silva-Rodriguez et al. 2010; Moreira-Arce et al. 2015; Soto and 

Palomares 2015), while studies on feral dogs described them to avoid human settlements (Silva-

Rodriguez and Sieving 2011; Krauze-Gryz et al. 2012). The interpretation of the occupancy results 

of this study is convincing, as records were both, feral dogs (n = 25) and owned/unowned free-

ranging dogs (n = 23) and as the above studies show, both categories might behave differently 

with regard to the parameters in question. Owned and unowned free-ranging dogs in this study 

seemed to behave similar to feral dogs.  

Among the environmental variables, important predictors of occupancy of free-ranging dogs were 

habitat type and height. Dogs more probably occupied sites in open habitats (coastal, pastures, 

peatbogs, shrublands, succession bogs and transition bogs) compared to forests. These findings 

are similar to those described by Lacerda et al. (2009), where owned and unowned free-ranging 

dog occurrence  was strongly associated to open habitats like shrublands and savannas in Brazil. 

Likewise, Meek (1999) found that owned free-ranging dogs in Australia preferred grasslands over 

other habitat types. Owned and unowned free-ranging dogs in India were also more present in 

agricultural land and bare-ground habitats compared to grasslands and plough land (Vanak & 

Gompper 2010). On the other hand, occupancy models of free-ranging dogs in Poland had no 

support for habitat variables (Krauze-Gryz et al. (2012), but this might be due to the fact that their 

study area was heavily impacted by humans, whereas Navarino Island is located in a wilderness 

setting. The fact that free-ranging owned/unowned and feral dogs in this study preferred 

shrublands and peatbog habitats might be related to the poor or even lacking resistance to 

movement in these habitats (Sepúlveda et al. 2015). Additionally, the probably higher presence 

of livestock in open habitats might be an attraction for owned, unowned and feral free-ranging 

dogs as prey or carcass (Bergman et al. 2009; Atickem et al. 2010; Silva-Rodriguez et al. 2010) 

(Figure A3). In this study, dogs also occupied lowland sites with a higher probability than sites at 

higher altitudes. This might be explained by possible altitudinal gradients in prey abundance 

(Patterson et al. 1989). There is evidence that on Navarino Island free-ranging dogs prey upon 

ground-nesting waterbirds (Figure A4) and their eggs (Schüttler et al. 2009). Waterbird species 

like the Kelp Goose and the Flightless Steamer Duck are strictly coastal (Couve et al. 2016) and 

some species breed in coastal colonies next to Puerto Williams like Kelp gulls, Dolphin gulls and 

South American terns (Schüttler et al. 2009). Given the fact that birds are the most diverse and 
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numerous vertebrate group on Navarino Island (Anderson et al. 2006), coastal waterbirds and 

their offspring might represent an important and in some cases even naïve prey (Schüttler et al. 

2009) for owned/unowned free-ranging and feral dogs. 

Our results showed that primary drivers for detection probability were animal trail density, Julian 

date and survey. In contrary to a priori expectations, the detection probability decreased in parallel 

to the on-going survey, which could possibly be explained due to the increase of home ranges of 

free-ranging dogs during warmer weather (Atickem et al. 2010). In later rotations, however, as 

foreseen, the detection probability increased, most probably due to an improved field experience 

by the surveyor (see also Fleschutz 2013). Free-ranging dogs were also better detected in sites 

with a higher animal trail density as those trails probably facilitate the movement and hence, 

detection of dogs (Fiorello et al. 2006; Sepúlveda et al. 2015; Parsons et al. 2016). 

Camera trap detections revealed that there are no significant differences in the daylight activity 

pattern among the different categories of free-ranging dogs. However, similar studies investigating 

owned and unowned free-ranging dogs (Paschoal et al. 2012, Moreira-Arce et al. 2015, add 

Sepulveda 2015) described statictically higher activity during the day when compared with activity 

during the night. Conversely, Krauze-Gryz et al. (2012) in Poland, and Boitani and Ciucci (1995) 

in Italy registered more records of feral dogs during the night than during the day. 

Our results revealed that there is empirical evidence of a feral dog population on Navarino Island 

as well as a preference for open habitats in lower altitudes by free-ranging dogs. Owned and 

unowned free-ranging dogs were registered in three occasions sharing sites with supposedly feral 

dogs at different times, and in one occasion sharing the same site at the same time. Therefore, 

we can infer that the home ranges of free-ranging (owned and unowned) dogs and feral dogs 

overlap in some places, especially in areas surrounding Puerto Williams (records of both dog 

categories at the same site ranged between 0.48 and 14.76 km from the town, Figure A5). This 

raises the question whether owned or unowned free-ranging dogs and feral dogs interact in some 

way, e.g., through cooperative hunting or mating. Further research, for example through GPS 

monitoring of feral dogs (Claridge et al. 2009) or animal-born cameras (Gerencsér et al. 2013), is 

needed to better understand these kind of interactions.  

American mink were the most recorded carnivore species in this study (n = 353 photos), but were 

only detected at the same site with dogs twice. There is scientific evidence that invasive species 

on Navarino Island interact (Crego et al 2016). Future studies could address the possibility of 

interguild competition between mink and free-ranging dogs as they might influence habitat use by 

mink (Schüttler et al. 2009). This information would be of substantial interest in the current mink 

control program of the SAG (SAG and FONDEMA 2008; Caicheo 2010). 
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On Navarino Island, feral dogs seem to reproduce since a female feral dog was photographed 

with two puppies and another female feral dog had clear signs of lactation (e.g. mammary glands 

hypertrophy, Figure A1). However, in literature, it is unlikely that free-ranging dog populations are 

self-sustaining, since they have a rapid population turnover driven by a high juvenile mortality 

(Butler and Bingham 2000). Free-ranging dog populations could only be maintained by recruitment 

of free-ranging owned individuals (Daniels and Bekoff 1989) due to poor pet care and husbandry 

(Butler and Bingham 2000). Further research is needed to determine whether the supposedly feral 

dog population on Navarino Island is a true feral population of self-sustained and reproducing 

individuals. 

Finally, there were some limitations of this study. (1) Due to the low recapture histories and number 

of unidentified individuals, capture-mark-recapture analysis could not be performed. This could be 

improved in the future, following the approach of Paschoal et al. (2016), who placed two camera 

traps at each site, facing each other. By these means full body photographs might facilitate the 

identification of individuals. (2) The relatively low detection probability in this study (𝑝̂ ranged from 

0.02 to 0.07) also limited the access to more data in order to run models for owned/unowned free-

ranging dogs and feral dogs separately. As both categories of dogs seem to behave differently 

regarding infrastructure variables, this would allow to further distinguish between factors affecting 

the occupancy of owned/unowned dogs and feral dogs, respectively. Hence, to raise the detection 

probability in future studies, surveying more sites less intensively to produce more precise 

estimates is advisable (Mackenzie and Royle 2005). And (3) based on a photographic catalogue, 

photos were classified into owned/unowned free-ranging dogs and feral dogs. However, dogs 

being absent in town must not necessarily be truly feral dogs as they still might feed on the local 

landfill. Extending the photographic catalogue to regularly register dogs feeding at the garbage 

dump might yield a more reliable classification of feral dogs for future studies.  
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7. CONCLUSION 

The results of this study have important implications for the management of free-ranging dogs in 

the Cape Horn Biosphere Reserve, which is the southernmost protected forest ecoregion of the 

globe. Forty nine per cent of registered owned dogs (n = 68) did not have any kind of restriction 

according to the Cape Horn Municipality’s veterinarian program (Llanos 2013). Apparently, some 

of those dogs accessed natural areas within the study area and were photographed by the 

camera-traps of this study. Therefore, the restriction of movements of owned dogs should be 

claimed by local authorities, in order to implement the new law on responsible pet ownership 

(MINSAL 2017). A further suggestion would be to control the unowned dog population in Puerto 

Williams by chemical castration of male dogs (Garde et al. 2016), since this has been shown to 

conceivably reduce pregnant females to the point of affecting population growth (Barnett 1986). 

Considering public health aspects, uncontrolled interactions between livestock and 

owned/unowned free-ranging dogs might represent a risk of hydatidosis contagion for humans 

(Jackman and Rowan 2007; Vaniscotte et al. 2011; Van Kesteren et al. 2013). Hydatidosis is an 

endemic disease for Chile (MINSAL 2015) with no current prevention programs implemented on 

Navarino Island. Therefore, vaccination and health checks should be stimulated among dog 

owners of Puerto Williams and dog owners among farmers. 

Camera-traps also recorded feral dogs. Feral dogs on Navarino Island might have a higher impact 

on local biodiversity as per definition they do not feed on human provided food resources or 

rubbish (Vanak and Gompper 2009a) and can reach high population rates in the absence of 

predators (Boitani et al. 2017). Therefore, feral dog eradication programs should be planned and 

implemented on Navarino Island, since natural isolation makes islands ideal places for 

implementing eradication programs (Capizzi et al. 2010). However, feral dog eradication should 

be implemented with cautiousness, since unwanted effects (Brooke et al. 2007) might arise such 

as the mesopredator (Courchamp et al. 1999) and herbivore release effect (Barnett 1986). Under 

the assumption that feral dogs are established predators in Navarino’s local ecosystem, their 

eradication might lead to an uncontrolled population growth of American mink, beavers and feral 

cattle. Finally, impacts of free-ranging dogs on the austral biodiversity and interactions between 

the community of invasive species should be studied urgently to gather a scientific database that 

informs polictical decisions towards the conservation of the pristiness of the Cape Horn Biosphere 

Reserve. 
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9. APPENDIX 

9.1 Appendix Figures 

 

Figure A1. Camera trap photographs representing cases of feral dog reproduction on 

Navarino Island, southern Chile. Female feral dog with its puppy (A) and another female feral 

dog with mammary gland hypertrophy (B). 

 

 

Figure A2. Photos of free-ranging dogs captured by camera traps on Navarino Island, 

southern Chile. Feral dog (A), owned free-ranging dog (B), unowned free-ranging dog (C) and 

interaction between an owned free-ranging dog (at the back) and a feral dog (at the front) (D). 
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Figure A3. Photographic record of predation of free-ranging dogs on livestock on Navarino 

Island, southern Chile. Dead calf killed by a free-ranging dog (A, ©Elke Schüttler) and a free-

ranging dog eating from a dead cow carcass (B, © Cristián Soto). 

 

 

Figure A4. Photographic record of predation of feral dogs on native birds on Navarino 

Island, southern Chile. Owned free-ranging dog killing an adult individual of Upland goose 

(Chloephaga picta) (A, ©Jaime Jiménez) and an adult individual of Crested duck (Lophonetta 

specularioides) killed by a free-ranging dog (B, © Nancyrose Houston). 
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Figure A5. Map about detection data of free-ranging dogs on Navarino Island, southern Chile. Free-ranging dog categories and 
their combinations at sampling sites are explained in the legend.
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9.2 Appendix Tables 

Table A1. Estimated occupancy (𝝍̂) and detection probability (𝒑̂) of free-ranging dogs on Navarino Island, southern Chile, 
extended table. Models were based on standardized data and were ranked according to Akaike’s Information Criterion (AIC). ΔAIC 
displays the difference between the AIC of a given model to the AIC of the lowest ranked model. Wi represents the model weight, K the 
number of parameters in each model and SE the standard error. Covariates for detection probability and occupancy are given in 
parentheses. Dots indicate constants. 

Model K AIC ΔAIC wi 𝜓̂ (SE) 𝑝̂ (SE) 

ψ(distRT +habitat+height+H:H), p(Jdate+densTrail+survey) 13 396.1 0.00 0.14 1.00 (0.02) 0.07 (0.02) 

ψ(distRT+habitat+height), p(Jdate+densTrail+survey) 11 396.7 0.64 0.10 0.85 (0.15) 0.07 (0.02) 

ψ(habitat+height), p(Jdate+densTrail+survey) 10 397.3 1.24 0.07 0.62 (0.23) 0.08 (0.02) 

ψ(dFarm+distRT+habitat+height+H:H), p(Jdate+densTrail+survey) 14 397.7 1.56 0.06 1.00 (0.03) 0.06 (0.02) 

ψ(distRT+habitat+height+rtDens+H:H), p(Jdate+densTrail+survey) 14 397.9 1.83 0.06 0.83 (1.25) 0.07 (0.02) 

ψ(dPW+distRT +habitat+height+H:H), p(Jdate+densTrail+survey) 14 398.0 1.85 0.06 0.99 (0.68) 0.07 (0.02) 

ψ(dFarm+distRT+habitat+height), p(Jdate+densTrail+survey) 12 398.3 2.22 0.05 0.88 (0.13) 0.06 (0.02) 

ψ(dPW+distRT+habitat+height), p(Jdate+densTrail+survey) 12 398.5 2.41 0.04 0.86 (0.15) 0.06 (0.02) 

ψ(distRT+habitat+height+rtDens), p(Jdate+densTrail+survey) 12 398.5 2.44 0.04 0.85 (0.15) 0.07 (0.07) 

ψ(habitat+height+H:H), p(Jdate+densTrail+survey) 12 398.6 2.53 0.04 0.18 (0.10) 0.09 (0.02) 

ψ(dPW+habitat+height), p(Jdate+densTrail+survey) 11 399.0 2.87 0.03 0.69 (0.35) 0.07 (0.02) 

ψ(dFarm+habitat+height), p(Jdate+densTrail+survey) 11 399.3 3.24 0.03 0.62 (0.24) 0.08 (0.02) 

ψ(habitat+height+rtDens), p(Jdate+densTrail+survey) 11 399.3 3.24 0.03 0.62 (0.24) 0.08 (0.02) 

ψ(dFarm+dPW+distRT+habitat+height+H:H), p(Jdate+densTrail+survey) 15 399.4 3.30 0.03 1.00 (0.00) 0.06 (0.02) 

ψ(dFarm+distRT +habitat+height+rtDens+H:H), p(Jdate+densTrail+survey) 15 399.6 3.51 0.02 1.00 (0.01) 0.07 (0.02) 

ψ(dPW+distRT +habitat+height+rtDens+H:H), p(Jdate+densTrail+survey) 15 399.6 3.52 0.02 1.00 (0.01) 0.07 (0.02) 

ψ(dFarm+dPW+distRT+habitat+height), p(Jdate+densTrail+survey) 13 399.8 3.65 0.02 0.92 (0.11) 0.05 (0.02) 

ψ(dPW+distRT+habitat+height+rtDens), p(Jdate+densTrail+survey) 13 400.1 4.02 0.02 0.86 (0.15) 0.06 (0.02) 

ψ(dPW+habitat+height+H:H), p(Jdate+densTrail+survey) 13 400.2 4.12 0.02 0.18 (0.10) 0.08 (0.02) 

ψ(dFarm+distRT +habitat+height+rtDens), p(Jdate+densTrail+survey) 13 400.3 4.17 0.02 0.87 (0.14) 0.06 (0.02) 

ψ(dFarm+habitat+height+H:H), p(Jdate+densTrail+survey) 13 400.5 4.44 0.02 0.17 (0.09) 0.09 (0.02) 

ψ(habitat+height+rtDens+H:), p(Jdate+densTrail+survey) 13 400.6 4.52 0.01 0.18 (0.10) 0.08 (0.02) 

ψ(dFarm+dPW+habitat+height+rtDens), p(Jdate+densTrail+survey) 12 400.9 4.83 0.01 0.71 (0.50) 0.07 (0.03) 
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Model K AIC ΔAIC wi 𝜓̂ (SE) 𝑝̂ (SE) 

ψ(dPW+habitat+height+rtDens), p(Jdate+densTrail+survey) 12 400.9 4.84 0.01 0.68 (0.36) 0.07 (0.02) 

ψ(dFarm+dPW+distRT +habitat+height+rtDens+H:H), p(Jdate+densTrail+survey) 16 401.3 5.20 0.01 1.00 (0.01) 0.06 (0.02) 

ψ(dFarm+habitat+height+rtDens), p(Jdate+densTrail+survey) 12 401.3 5.24 0.01 0.63 (0.26) 0.07 (0.02) 

ψ(dFarm+dPW+distRT +habitat+height+rtDens), p(Jdate+densTrail+survey) 14 401.6 5.54 0.01 0.92 (0.12) 0.05 (0.02) 

ψ(dFarm+dPW+habitat+height+H:H), p(Jdate+densTrail+survey) 14 402.1 6.04 0.01 0.17 (0.10) 0.08 (0.03) 

ψ(dPW+habitat+height+rtDens+H:H), p(Jdate+densTrail+survey) 14 402.2 6.10 0.01 0.18 (0.10) 0.08 (0.02) 

ψ(dFarm+habitat+height+rtDens+H:H), p(Jdate+densTrail+survey) 14 402.5 6.44 0.01 0.17 (0.09) 0.09 (0.03) 

ψ(dFarm+dPW+habitat+height+rtDens), p(Jdate+densTrail+survey) 13 402.9 6.82 0.01 0.71 (0.50) 0.07 (0.03) 

ψ(dFarm+dPW+habitat+height+rtDens+H:H), p(Jdate+densTrail+survey) 15 404.1 7.99 0.00 0.17 (0.10) 0.08 (0.03) 

ψ(height), p(Jdate+densTrail+survey) 8 409.0 12.92 0.00 0.19 (0.05) 0.09 (0.02) 

ψ(height+rtDens), p(Jdate+densTrail+survey) 9 410.7 14.58 0.00 0.19 (0.05) 0.09 (0.02) 

ψ(dPW+height+rtDens), p(Jdate+densTrail+survey) 9 410.9 14.80 0.00 0.19 (0.05) 0.08 (0.02) 

ψ(dFarm+height), p(Jdate+densTrail+survey) 9 411.0 14.90 0.00 0.19 (0.05) 0.09 (0.03) 

ψ(distRT+height), p(Jdate+densTrail+survey) 9 411.0 14.91 0.00 0.19 (0.05) 0.09 (0.02) 

ψ(dPW+height+rtDens), p(Jdate+densTrail+survey) 10 412.3 16.23 0.00 0.19 (0.05) 0.08 (0.02) 

ψ(dFarm+height+rtDens), p(Jdate+densTrail+survey) 10 412.6 16.50 0.00 0.18 (0.05) 0.09 (0.03) 

ψ(distRT+height+rtDens), p(Jdate+densTrail+survey) 10 412.7 16.58 0.00 0.19 (0.05) 0.09 (0.02) 

ψ(dPW+distRT+height), p(Jdate+densTrail+survey) 10 412.9 16.76 0.00 0.19 (0.05) 0.08 (0.02) 

ψ(dFarm+dPW+height), p(Jdate+densTrail+survey) 10 412.9 16.77 0.00 0.19 (0.06) 0.08 (0.03) 

ψ(dFarm+distRT+height), p(Jdate+densTrail+survey) 10 413.0 16.88 0.00 0.19 (0.06) 0.09 (0.03) 

ψ(dFarm+dPW+height+rtDens), p(Jdate+densTrail+survey) 11 414.2 18.05 0.00 0.19 (0.05) 0.09 (0.03) 

ψ(dPW+distRT +height+rtDens), p(Jdate+densTrail+survey) 11 414.3 18.23 0.00 0.19 (0.05) 0.08 (0.02) 

ψ(dFarm+distRT +height+rtDens), p(Jdate+densTrail+survey) 11 414.6 18.49 0.00 0.18 (0.05) 0.09 (0.03) 

ψ(dFarm+dPW+distRT +height), p(Jdate+densTrail+survey) 11 414.8 18.71 0.00 0.19 (0.06) 0.09 (0.03) 

ψ(dFarm+dPW+distRT +height+rtDens), p(Jdate+densTrail+survey) 12 416.2 20.05 0.00 0.19 (0.05) 0.09 (0.03) 

ψ(dFarm+habitat+rtDens), p(Jdate+densTrail+survey) 11 417.2 21.10 0.00 0.33 (0.11) 0.09 (0.02) 

ψ(distRT), p(Jdate+densTrail+survey) 8 417.6 21.49 0.00 0.18 (0.05) 0.09 (0.03) 

ψ(habitat+rtDens), p(Jdate+densTrail+survey) 10 417.9 21.84 0.00 0.35 (0.12) 0.08 (0.02) 

ψ(distRT+hábitat), p(Jdate+densTrail+survey) 10 418.0 21.91 0.00 0.21 (0.09) 0.09 (0.03) 
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Model K AIC ΔAIC wi 𝜓̂ (SE) 𝑝̂ (SE) 

ψ(rtDens), p(Jdate+densTrail+survey) 8 418.0 21.93 0.00 0.23 (0.05) 0.09 (0.02) 

ψ(dFarm+distRT+habitat), p(Jdate+densTrail+survey) 11 418.2 22.06 0.00 0.27 (0.10) 0.10 (0.03) 

ψ(dFarm+distRT), p(Jdate+densTrail+survey) 9 418.3 22.16 0.00 0.17 (0.05) 0.10 (0.03) 

ψ(dFarm+distRT +habitat+rtDens), p(Jdate+densTrail+survey) 12 418.3 22.21 0.00 0.28 (0.10) 0.10 (0.03) 

ψ(dFarm+rtDens), p(Jdate+densTrail+survey) 9 418.3 22.23 0.00 0.20 (0.05) 0.09 (0.03) 

ψ(distRT+rtDens), p(Jdate+densTrail+survey) 9 418.4 22.28 0.00 0.19 (0.05) 0.09 (0.03) 

ψ(distRT+habitat+rtDens), p(Jdate+densTrail+survey) 11 418.6 22.45 0.00 0.28 (0.10) 0.09 (0.03) 

ψ(dFarm+distRT+rtDens), p(Jdate+densTrail+survey) 10 418.8 22.73 0.00 0.17 (0.05) 0.10 (0.03) 

ψ(dFarm+dPW+habitat+rtDens), p(Jdate+densTrail+survey) 12 419.1 23.01 0.00 0.32 (0.11) 0.09 (0.02) 

ψ(dPW+distRT), p(Jdate+densTrail+survey) 9 419.5 23.44 0.00 0.18 (0.05) 0.09 (0.03) 

ψ(dPW+distRT+habitat), p(Jdate+densTrail+survey) 11 419.6 23.48 0.00 0.29 (0.10) 0.10 (0.03) 

ψ(dPW+habitat+rtDens), p(Jdate+densTrail+survey) 11 419.9 23.80 0.00 0.35 (0.12) 0.08 (0.02) 

ψ(dFarm+dPW+rtDens), p(Jdate+densTrail+survey) 10 420.0 23.85 0.00 0.21 (0.05) 0.09 (0.02) 

ψ(dPW+rtDens), p(Jdate+densTrail+survey) 9 420.0 23.91 0.00 0.23 (0.05) 0.08 (0.02) 

ψ(dFarm+dPW+distRT+habitat), p(Jdate+densTrail+survey) 12 420.0 23.93 0.00 0.28 (0.11) 0.10 (0.03) 

ψ(dFarm+dPW+distRT), p(Jdate+densTrail+survey) 10 420.3 24.15 0.00 0.17 (0.05) 0.10 (0.03) 

ψ(dFarm+dPW+distRT+habitat+rtDens), p(Jdate+densTrail+survey) 13 420.3 24.20 0.00 0.27 (0.10) 0.10 (0.03) 

ψ(dPW+distRT +rtDens), p(Jdate+densTrail+survey) 10 420.4 24.27 0.00 0.19 (0.05) 0.09 (0.03) 

ψ(dPW+distRT+habitat+rtDens), p(Jdate+densTrail+survey) 12 420.4 24.33 0.00 0.29 (0.10) 0.09 (0.03) 

ψ(dFarm+dPW+distRT+rtDens), p(Jdate+densTrail+survey) 11 420.6 24.47 0.00 0.17 (0.05) 0.10 (0.03) 

ψ(.), p(Jdate+densTrail+survey) 7 421.7 25.61 0.00 0.24 (0.05) 0.08 (0.02) 

ψ(dFarm), p(Jdate+densTrail+survey) 8 422.1 26.00 0.00 0.21 (0.05) 0.09 (0.03) 

ψ(dPW), p(Jdate+densTrail+survey) 8 422.2 26.13 0.00 0.22 (0.05) 0.09 (0.03) 

ψ(dPW+habitat), p(Jdate+densTrail+survey) 10 422.4 26.34 0.00 0.33 (0.10) 0.09 (0.03) 

ψ(dfarm+dPW+habitat), p(Jdate+densTrail+survey) 11 423.1 27.03 0.00 0.32 (0.10) 0.10 (0.03) 

ψ(dFarm+dPW), p(Jdate+densTrail+survey) 9 423.2 27.13 0.00 0.20 (0.05) 0.10 (0.03) 

ψ(dFarm+habitat), p(Jdate+densTrail+survey) 10 423.3 27.22 0.00 0.30 (0.09) 0.09 (0.03) 

ψ(habitat), p(Jdate+densTrail+survey) 9 423.5 27.37 0.00 0.33 (0.10) 0.08 (0.02) 

dFarm: distance from de nearest farm; dPW: distance from Puerto Williams; distRT: distance from the nearest road/trail; H:H: 
habitat:height interaction; Jdate: Julian date; rtDens: road and trail dens 


