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RESUMEN 

 

En la cuenca del Río Maipo, ubicada en la zona central de Chile, la actividad 

minera es el principal factor que afecta vegas altoandinas, a través del consumo 

de agua y explotación de la tierra. Debido a que estos humedales son altamente 

vulnerables y susceptibles a cambios en el suministro de agua, alteraciones y 

modificaciones en el régimen hidrológico tienen efectos directos sobre la 

condición ecofisiológica y la cobertura de la vegetación. El objetivo principal de 

este trabajo fue evaluar el potencial de las imágenes de alta resolución 

Worldview-2 y Sentinel-2 para el mapeo de vegas altoandinas a través de 

clasificadores de una clase, en específico “Bias support vector machine” 

(BSVM), y la estimación del estado hídrico de vegas mediante el uso del 

algoritmo de regresión ‘Partial least square regression’. 

 

Los resultados de esta investigación demuestran que la combinación de un 

limitado número de observaciones y datos de teledetección reducen 

significativamente el esfuerzo de campo y permiten la obtención de mapas que 

detallan de manera precisa vegas altoandinas. BSVM logró clasificar áreas de 

vegas con una precisión general de más del 85% con ambos sensores. 

Además, se logró estimar la humedad superficial del suelo (primeros 20 cm) 

dentro de las áreas clasificadas como vegas con datos de teledetección y 

algoritmos de regresión simple. La predicción de la humedad del suelo alcanzó 

valores de R² hasta 63% y error cuadrático medio normalizado entre 11% y 18% 

con Sentinel-2, mientras que las estimaciones con Worldview-2 arrojaron 

resultados no satisfactorios. 



x 

 

El enfoque presentado es particularmente valioso para monitorear áreas de 

humedales de alta montaña con acceso limitado, como en los sectores 

húmedos de la Cordillera de los Andes.  
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ABSTRACT 

 

In the Río Maipo watershed, situated in the central of Chile, mining activities are 

impacting high altitude Andean wetlands through the consumption and 

exploitation of water and land. As wetlands are vulnerable and particularly 

susceptible to changes of water supply, alterations and modifications in the 

hydrological regime have direct effects on their eco-physiological condition and 

vegetation cover. The aim of this study was to evaluate the potential of 

Worldview-2 and Sentinel-2 sensors to identify and map Andean wetlands 

through the use of the one-class classifier Bias support vector machine (BSVM), 

and then to estimate soil moisture content of the identified wetlands during the 

summer period using partial least square regression.  

 

The results obtained in this research showed that the combination of remote 

sensing data and a small sample of ground reference measurements enable to 

map Andean high wetlands with high accuracies. BSVM was capable to classify 

the meadow areas with an overall accuracy of over ~85% for both sensors. Our 

results also indicate that it is feasible to estimate surface soil moisture (first 20 

cm) with optical remote sensing data and simple regression approaches. 

Surface soil moisture estimates reached R² values of up to 63%, and standard 

mean square errors between 11% and 18% using Sentinel-2 data, while 

Worldview-2 estimates resulted in non-satisfying results. The presented 

approach is particularly valuable for monitoring high-mountain wetland areas 

with limited accessibility such as in the Andes.
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1. INTRODUCTION 

 

Andean high altitude wetlands (‘vegas’; wet meadows) are wetlands usually 

located in humid areas of the Andes in north-central Chile (Squeo et al., 2006a; 

Squeo et al., 2006b). These wetlands are important key components of the 

Andean ecosystems, providing several ecosystem services like water supply 

and habitat for wildlife and livestock (Ahumada & Faúndez, 2009; Contreras, 

2007; García & Otto, 2015). However, Andean high altitude wetlands have 

suffered a strong degradation and transformation in the last decades, especially 

as a consequence of agriculture and mining activities (Cepeda-Pizzaro & Pola, 

2013; Squeo et al., 2006). 

 

In the Maipo River Basin located in central Chile, mining activity is the main 

factor impacting Andean wetlands, through the consumption and exploitation of 

water and land (GORE-RMS, 2013). Andean wetlands are particularly 

susceptible to changes of water supply, alterations and modifications in the 

hydrological regime which were found to have direct effects on vegetation cover 

(Ahumada et al., 2011; Ahumada & Faúndez, 2009). In order to understand 

these ecosystems better, as well as for conservation planning and an efficient 

management of resources, there is a strong need for a spatially explicit and up-

to-date inventory of Andean wetland ecosystems. This need is contrasted by a 

lack of baseline dataset and limited knowledge on these habitats (Muñoz-Schick 

et al., 1997). 

 

Remote sensing (RS) data has proven to be a useful source of information for 

mapping and monitoring wetland ecosystem at different temporal and spatial 
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scales (e.g. Adam et al., 2010; Ozesmi & Bauer, 2002; Rundquist et al., 2001), 

and has been considered a valuable tool for their conservation (Baker et al., 

2006; Davranche et al., 2013; MacAlister & Mahaxay, 2009; Whiteside & 

Bartolo, 2015). RS allows obtaining objective information in remote and isolated 

areas such as the high Andean basins. Accurate and up-to-date mapping, 

inventory and assessment of wet meadows is extremely important to assess 

changes in wetlands’ vegetation composition and cover and water content due 

to natural or anthropogenic disturbances over time (Ozesmi & Bauer, 2002; 

Rundquist et al., 2001; Wang et al., 2015).  

 

Soil moisture (SM) is one of the key parameters estimated by RS data and 

closely related to wetland ecology. SM is usually estimated by means of passive 

microwaves sensors such as SMOS (e.g., Kerr et al., 2012), that could be 

disaggregated to higher resolution with thermal data (Merlin et al., 2012b; 

Molero et al., 2016). Another alternative is the use active radar systems, 

normally with VV polarization (e.g. Zribi et al., 2005; Zribi & Decharme, 2008) 

However, approaches using passive microwave and radar sensors mostly 

deliver SM information at coarse resolution (~100−4000 m). Reason why there 

is an interest in the development of spectral indices and physical models based 

on free optical sensors, such as Sentinel-2. First studies applying vegetation 

indices (e.g. NDVI) in conjunction with short-wave infrared (SWIR) information 

have already been presented (e.g. Sadeghi et al., 2017). Such approaches may 

enable the estimation of SM at local scales, which is key when mapping non-

extensive isolated wetlands such as the Andean wetlands which are located in 

the highlands of the Andes and usually do not occupy large extensions of lands 

as they depend on special micro-relief characteristics which only occur locally. 
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The aim of this study was to analyse the potential of high spatial resolution 

optical data, i.e. Worldview-2 and Sentinel-2, for mapping and monitoring 

Andean wetlands of central Chile. To achieve this, we propose the use of a one-

class-classifier to map the occurrences of Andean wetlands using sparse ground 

data. Such approach has been applied earlier for other ecosystems (e.g. Mack 

et al., 2016; Stenzel et al., 2017) and we deem this approach particularly 

valuable in our study area which is geographically isolated and where field data 

is hard to acquire. With the suggested work-flow we aim to create baseline data 

to complement the Chilean Wetland National Inventory, which is known to 

underestimate the extent of Andean wetlands (MMA-Centro de Ecología 

Aplicada, 2011), which hampers their proper conservation and management.  

 

Secondly, we tested the suitability of the two satellite systems to estimate SM 

within the areas identified as Andean wetlands during the first step by applying 

empirical regression algorithms. Such an approach may become possible 

because in the Andes wetlands the SM gradient is usually related to a 

vegetation cover gradient which should be detectable by optical remote sensing 

data. The combination of both approaches could be the basis for a monitoring 

system that is able to detect early responses of Andean wetlands to natural or 

anthropogenic disturbances.  
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2. OBJECTIVES 

 

2.1 General objective 

 

Analyze the potential of high spatial resolution optical data, in specific, 

WorldView-2 and Sentinel-2 satellite images for mapping and monitoring 

Andean high altitude wetlands of central Chile 

 

2.2 Specific objectives 

 

Evaluate and compare the accuracy in the identification of Andean high altitude 

wetlands of central Chile through WorldView-2 and Sentinel-2 satellite images 

 

Evaluate and compare the suitability of WorldView-2 and Sentinel-2 sensors to 

estimate soil moisture content within the areas identified as Andean wetlands. 
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3. MATERIALS AND METHODS  

 

3.1. Study area 

 

 
Fig. 1 Study area in San José del Maipo, Chile. Areas delineated with  black lines 

correspond to the locations of Andean wetlands as listed in the national wetland 

inventory of the year 2011 (MMA-Centro de Ecología Aplicada, 2011). Dark dots show 

the location of the soil moisture sampling locations during the summer season.  

 

The study area is situated in the high-alpine areas of the Maipo River Basin in 

the Metropolitana region of Chile (Fig. 1). Fieldwork was conducted on the 

Estero La Engorda sub basin (6259600 S−407100 W) which covers an area of 

60,000 m². This area is mainly characterized by arid Mediterranean climate, with 
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precipitations occurring mainly as snow during the winter. Summers are dry, with 

occasional rain-storms. Currently, the wetlands located in La Engorda are being 

disturbed through the construction and installation of weirs and temporary roads 

supporting a hydroelectric installation nearby. 

 

 

Fig. 2. High Andean vegetation of the Estero La Engorda. 

Wet meadows are dominated by species with rhizome growth form and very 

small grasses (less than 40 cm in height), with dominant species from the 

genera Carex and Scirpus. This type of vegetation is called zonal (local) 

vegetation and it is determined by factors like precipitation, altitude and slope 

(Ahumada & Faúndez, 2009) but also depends on soil properties and humidity 

(Fig.2).  
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3.2 Ground reference data 

 

During the field survey soil moisture was measured at 30 stratified random point 

samples during the summer period of 2015-2016, with repetitive measurements 

taken in December, January, February and March. 

 
Table 1. Descriptive statistics of the soil moisture samples (g/g) during the summer 

season.  

 2015  2016  

 December January February March 

Minimum  0.03 0.01 0.01 0.01 

Median 0.27 0.34 0.27 0.23 

Mean 1.02 1.11 1.06 1.08 

Maximum 8.41 6.72 8.65 11.45 

Coefficient of variation (%) 181 163 182 215 

Shapiro-Wilk (P-value) 0.00000003 0.0000002 0.00000002 0.000000005 

 

At each sampling point, soil moisture measurements were obtained from soil 

samples taken by a cylinder with a diameter of 52 mm (first 15 cm of soil). The 

soil samples were stored in plastic bags inside coolers to avoid moisture loss by 

evapotranspiration. In the laboratory, we followed the procedure of Sadzawka et 

al. (2006) to estimate the gravimetric soil moisture (g/g), where the soil samples 

were dried at 105 ± 5 °C for 48 h. Table 1 depicts the descriptive statistics of 

each field campaign. To evaluate the temporal variability of the soil moisture, a 

non-parametric Kruskal-Wallis test was performed, as the soil moisture samples 

did not reach the normality assumption according to the Shapiro-Wilk test; Table 

1). 
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3.3 Remote sensing data 

 

S We acquired WorldView-2 (WV-2) imagery from December 20th and March 

20th. The data were delivered in radiance units, and were successively 

converted to reflectance at the top of the atmosphere using ENVI® (Exelis 

Visual Information Solutions, Boulder, CO, version 4.7) and the method 

proposed by Updike & Comp (2010). WorldView-2 collects multispectral 

information in 8 bands, covering the spectral ranges between 400−450 nm 

(coastal), 450−510 nm (blue), 510−581 nm (green), 585−625 nm (yellow), 

630−690 nm (red), 705−745 nm (red edge), 770−895 nm (near-infrared 1; NIR 

1) and 860−1040 nm (NIR 2), with a pixel size of 2 m.  

 

Sentinel-2 (S-2) imagery was acquired through the “Copernicus Scientific Data 

Hub” webpage. We acquired imagery for the four dates most closely matching 

the dates of the field campaigns. S-2 has 13 bands with different spatial and 

spectral resolutions: 398−594 nm (coastal), 515−605 nm (green), 626−702 nm 

(red) and 690−980 nm (NIR) at 10 m resolution; four bands in the near-infrared 

(683−722, 722−758, 755−810 and 831−897 nm) and two bands in the short-

wave infrared (1470−1756 and 1960−2444 nm; SWIR) at 20 m resolution; and 

three bands at 60 m resolution, at the coastal (415−740 nm), NIR (919−971 nm) 

and SWIR (1298−1447 nm). We used only the 10 and 20 m bands due to the 

small distance between field sampling points. The bands at 20 m were 

resampled to 10 m using the Sentinel-2 Toolbox of SNAP (Sentinel Application 

Platforms, version 5.0).  
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Atmospheric corrections were carried out for all images by applying the dark 

object subtraction method (Chavez, 1988). Furthermore, geometric corrections 

were performed in ENVI® using a SRTM digital elevation model (DEM) of 90 m. 

Finally, all images were brightness normalized using the method of Feilhauer et 

al. (2010) to maximize spectral differences of vegetated areas.  

 

3.4 Mapping Andean high wetlands  

 

3.4.1 Classification of Andean wetlands 

 

To map the current extent of Andean wetlands we applied the one-class 

classifier biased support vector machines (BSVM; Liu et al., 2003). BSVM is a 

special form of binary SVM, that labels only the class of interest (positive class) 

while all other classes remain unlabelled (‘background’ class; Li & Guo, 2014; 

Mack et al., 2014). This reduces the amount of required in situ information 

significantly (Li et al., 2011; Song et al., 2016). This algorithm has been used 

successfully to map grasslands and wetland ecosystems using remote sensing 

data before (e.g. Mack et al., 2016; Stenzel et al., 2017).  

 

We used the Chilean wetland inventory of the year 2011 (MMA-Centro de 

Ecología Aplicada, 2011) to obtain 200 samples for training the BSVM. The 

positions of the training samples were randomly selected from inside the areas 

indicated as wetland in the inventory data. 200 more random pixels were 

selected in the whole study area to provide samples for the ‘background’ class. 

This process based on a completely random selection, hence, the background 

class is likely to contain some pixels from the positive class. A 70% of the 
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selected pixels were used for training while the remaining 30% were 

consecutively used for validation.  

 

We applied BSVM with a radial basis kernel (e.g. Mack et al., 2016; Stenzel et 

al., 2017) and the parameters ‘sigma’, ‘Cv’ and ‘Cb’ were tuned by a 10-fold 

cross-validation to find the best model. ‘Sigma’ is a function related to the kernel, 

‘Cv’ is the penalty associated to classification errors and ‘Cb’ is the relative cost 

of the errors inside the ‘background’ class.  The classifier was trained with 8 

predictors in case of the WV-2 images and 10 predictors for the S-2 images (i.e. 

spectral bands).  

 

To select the best model we consider two accuracy metrics often used in 

combination with one-class-classifiers: a) the probability of positive prediction 

(PPP), and b) the true positive rate (TPR; Mack et al., 2014). The model which 

maximized the TPR while minimized the PPP was selected. The final outputs of 

the one-class classifier are maps showing the probability of occurrence of the 

positive class (i.e. wetlands). The analysis was performed using the R-package 

‘OneClass’ (Mack et al., 2014). 

 

3.4.2 Predicting soil moisture 

 

Soil moisture (SM) was modelled using WV-2 and S-2 imagery separately. In 

case of WV-2, only the field data obtained in December and March were used, 

while for S-2 two sets of data were used: 1) December and March (to compare 

with WV-2), and 2) using all available field data (December, January, February 

and March). Furthermore, to compare also the radiometric characteristic of both 
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sensors, a homogenization of the spatial and spectral resolution was performed, 

where: 1) the resolution of WV-2 was resampled (‘bilinear’) to 10 m to match S-

2, and 2) only 6 bands of S-2 (the ones closest to the wavelength of WV-2) were 

used to match the spectral characteristics of WV-2.  

 

We used partial least square regression (PLSR; Wold et al., 2001) trained with 

the reflectance values and the field-measured SM estimates to predict SM 

across all areas identified as wetlands during the preceding mapping procedure 

(see section 2.4.3.). PLSR is a well-known algorithm that summarizes the 

predictors’ information into fewer less correlated components (Wold et al., 

2001). The models were optimized by a backward-selection of predictors 

(Martens & Martens, 2000), while the number of selected components (to 

minimize the possibility of overfitting) were selected by the leave-one-out cross-

validated root mean square error (RMSEval); soil moisture was modelled with an 

increasing number of components as predictors, and the model with lower 

RMSEval was selected for each sensor.  

 

Once the best model was selected (in terms of RMSEval), a bootstrap 

procedure with 500 iterations was applied for further validation. In each iteration, 

n observations were randomly selected with replacement from the n available 

samples. From this selection, approximately a 36.8% of the samples were not 

chosen in each iteration, and were used as holdout samples for the independent 

validation (Lopatin et al., 2016). Model performances were compared based on 

differences in the coefficients of determination (r²; calculated as the squared 

Pearson's correlation coefficient), the normalized root mean square error 

(nRMSE) and the bias between predicted and observed LVs of the holdout 
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samples in the bootstrap. nRMSE is calculated as 

𝑛𝑅𝑀𝑆𝐸 =  (√
1

𝑛
∑ (𝑦𝑗 − 𝑦̂𝑗)²𝑛

𝑗=1 /[𝑚𝑎𝑥(𝑆𝑀) − 𝑚𝑖𝑛(𝑆𝑀)]) ∗ 100, where n is the 

number of samples and SM is soil moisture. Likewise, the bias of prediction was 

measured as one minus the slope of a regression without intercept of the 

predicted versus observed values (Lopatin et al., 2016).  

 

We tested other regression algorithms, such as random forest, support vector 

machines and K-nearest neighbours, which did not result in an improvement of 

the model; hence their results are not presented in the manuscript. The R-

package ‘autopls’ was applied for the analysis (Schmidtlein et al., 2012). 

 

Finally, we applied a one-sided bootstrapping test (Lopatin et al., 2016) to check 

for significant differences in the models (α = 0.05; in terms of R² and nRMSE). 

We tested for significant differences between the classification results of the 

models trained with different number of observations (S-2 models using 120 and 

60 observation), as well as for the sensors (homogenized models of WV-2 and 

S-2.)  

 

3.4.3 Mapping soil moisture 

 

Predictive maps of SM were calculated for each available image of the best 

obtained model. We used the probability maps depicted from the BSVM 

classification to mask out all non-wetlands areas (i.e. probabilities < 80%; 

threshold selected to only include high probability areas). Additionally, 

bootstrapping with 100 iterations was performed during the SM map predictions 
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to obtain the median and the coefficient of variation (CV, given in %) of SM 

values for each pixel. High values of CV indicate a less stable SM prediction.  
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4. RESULTS 

 

4.1 Identification of Andean wetlands 

 

The BSVM classifications resulted in probability maps showing the extent and 

location of all detected wetlands (Fig. 3). The confusion matrices (Table 2) show 

a general tendency for higher performances in March than in December. S-2 

obtained an overall accuracy (OA) of ~90%, a producer accuracy (PA) of ~99% 

and a user accuracy (UA) of 77% for both images, while WV-2 depicted slightly 

lower accuracies (OA ~ 85%, PA ~ 94% and UA ~71%). Omission errors (i.e. 

exclusion) were small for both sensors, with values of 2% for S-2 and values 

between 4% and 8% for WV-2. Likewise, commission errors (i.e. false positives) 

were of 30% for WV-2 and 25% for S-2, showing a tendency for overestimating 

the wetlands presence.  

 
Table 2. Classification results of the Biased Support Vector Machine classifications with 

Worldview-2 and Sentinel-2. 

             Worldview-2                     Sentinel-2 

 December March December March 

User accuracy (%) 71 72 77 77 

Producer accuracy (%) 92 96 98 100 

Commission error (%) 29 28 23 22 

Omission Error (%) 8 4 2 2 

Overall accuracy (%) 85 86 90 91 

 

From all pixels classified as wetlands, only ~55% obtained probabilities of over 

80% for both sensors. WV-2 registers an increase of the wetland area for Mach 
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in comparison to December (from 30 ha to 33 ha), while on the contrary S-2 

accounted a decrease of the wetland area from December to March (from 25 ha 

to 23 ha) when considering only the pixels with a probability of over 80% (Table 

3). 

 

 
Fig. 3. Probability of occurrence (OCC) of Andean wetlands in La Engorda valley using 

WorldView-2 and Sentinel-2 imageries from the beginning (December) and ending 

(March) of the summer. Black lined polygons show the wetlands presented in the 

Wetland National Inventory of 2011 (MMA-Centro de Ecología Aplicada, 2011). Areas 

with zero OCC were masked out. 
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Table 3. Resulting wetland cover estimates obtained with BSVM and the sensors WV-2 

and S-2.  

Sensor Date Total area 

(ha) 

Classified area as 

meadow (ha) 

Classified area as 

meadow with probability > 

80% (ha) 

WV-2 December 
241,54 

58 30 

March 58 33 

S-2 December 
241,24 

41 25 

March 35 23 

 

4.2 Soil moisture prediction  

 

In Table 4 the result of all tested models using PLSR and leave-one-out cross-

validation are presented. Generally, models using S-2 imagery showed higher 

performances. The best model was obtained by including samples from all four 

available field measurement dates (R²val = 0.58 and nRMSEval = 15.30%). The 

accuracy of the WV-2 model increased when enlarging the pixel side (to 10 m to 

match S-2). Nevertheless, when matching the two sensor characteristics (i.e., 

both with 10 m pixel and 6 bands with similar wavelengths), S-2 models still 

obtained significantly (α = 0.05) higher fits than the WV-2 models (R²val = 0.40 

and nRMSEval = 18.20%). In Fig. 4, the bootstrapped distribution of accuracies 

using the best model (i.e. S-2 with 120 observations) can be seen, where the 

model reaches median values of R² = 0.63, nRMSE = 11.1% and bias = 0.28. 

The model shows that small SM values tend to be slightly overestimated, while 

middle and high SM values tend to be underestimated.  
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Fig. 4. Bootstrapping validation for the models using observation from all summer 

season. On the top, a scatterplot of predicted against observed values of soil moisture 

is presented while on the bottom the bootstrapped distribution of the accuracies are 

displayed.  
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Table 4. Summary of soil moisture (g/g) predictions by WV-2 and S-2 with PLSR. * 

denote a significant improvement (α = 0.05) of the model accuracy.  

Model Sensor Dataset 
Number of 

observation 

Spatial 

resolution 

(m) 

Number of 

bands 
R²val 

nRMSE

val (%) 

Original information 

1 WV-2 Dec/Mar 60 2 6 0.11 22.16 

2 S-2 Dec/Mar 60 10 10 0.51 16.39 

3 S-2 Dec/Jan/

Feb/Mar 

120 10 10 0.58 15.30 

Homogenized information 

4 WV-2 Dec/Mar 60 10 6 0.25 20.44 

5 S-2 Dec/Mar 60 10 6 0.40* 18.20* 

 

Finally, median and coefficient of variation (CV) prediction maps for December 

and March are presented in Fig. 5. The patterns agree with the field 

observations, where the central areas and areas closest to the road intervention 

are highly saturated with water while the exterior areas show less soil moisture. 

Moreover, areas depicting higher SM values were more stable during 

bootstrapping (CV < 12%), while driest areas were highly variable (CV > 12%). 
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Fig. 5. Soil moisture prediction maps for the beginning (December) and end (March) of 

the summer season. In A, the mean bootstrap value per pixel is showed; while in B the 

coefficient of variation (CV in %) per pixel is presented. Black lined polygons shows the 

wetlands presented in the Wetland National Inventory of 2011 (MMA-Centro de 

Ecología Aplicada, 2011). Predictions were carried out only within areas with a wetland 

occurrence probability of over 80% according to the BSVM classification. 
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5. DISCUSSION  

 

5.1 Classification of Andean wetlands 

 

The results showed that it is feasible to accurately map the presence and extent 

of Andean wetlands by optical RS with few field efforts. The BSVM classification 

resulted in high performances with both sensors, with a slight tendency to 

overestimate the wetland area (commission errors of ~30%). In our case this 

commission error is likely to at least partly be explainable by the incompleteness 

of the reference dataset which is known to underestimate the number and the 

extent of Andean wetlands (MMA-Centro de Ecología Aplicada, 2011; see 

section 4.3 for an explanation of how these areas were mapped in the reference 

dataset). On the other hand, such errors can also be attributed to the structure 

of the so called ‘background’ class, where a random selection of pixels 

(including from the positive class) is performed. This process has been reported 

to lead to commission errors in earlier studies. For example, Skowronek et al. 

(2017) reported commission errors of 34% when mapping the invasive species 

Phalaris aquatica. Moreover, Stenzel et al. (2014) mapped alkaline fens and 

raised bogs with similar commission errors, while Mack et al. (2016) obtained 

high levels of overestimation of raised bogs (~75%). This underlines the 

importance of the ‘background’ class when working with the BSVM classifier. 

Recently, Mack et al. (2016) developed an iterative process to ‘clean’ the 

‘background’ class as much as possible of pixels of the positive class. This 

procedure improved their classification results for mapping raised bogs by 

~26%. In our case, the separation of the positive class (i.e. wetlands) from the 

rest of the landscape was accurate enough without any previous iterative 
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process (i.e. overall accuracies over ~85%), as the spectral characteristics of 

the non-wetlands are clearly separable from the wetland areas. Not performing 

the iterative step saves a considerable amount of CPU process time (Mack et 

al., 2016), which is an important factor to account for when monitoring large 

areas. 

 

One advantage of BSVM is that the classification maps (Fig. 3) can be displayed 

as continuous probability of occurrence maps (OCC given in %). Contrary to 

other binary classifiers that deliver result with sharp boundaries, BSVM hence 

allows for the detection of continuous patterns in the landscape, which agree 

more with the graduate gradients of water, nutrient and plant covers in nature 

(Reschke & Hüttich, 2014; Tiner, 2015). 

 

Here, we used each monthly field samples independently for the classification. 

Similar approaches were presented by e.g. (Lee & Yeh (2009) and McCarthy et 

al., (2015), which used optical RS of single dates to classify mangroves and 

coastal marshes respectively. Contrary, most of the previous studies focusing on 

wetland mapping used seasonal information to enhance the classification (i.e. 

higher range of photosynthetic activity; e.g. Adam et al., 2010; Davranche et al., 

2010; Ozesmi & Bauer, 2002; Townsend et al., 2001). Seasonal information is 

particularly valuable if the target wetland ecosystem is difficult to classify from 

the other landscape types occurring in the background. In our case, the  high 

altitudinal Andes wetlands had a spectral signature which differed notably from 

the landscape which allowed us obtain good classification accuracies (overall 

accuracies > 85%) without adding seasonal information (e.g. McCarthy et al., 

2015).  
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Concerning spatial resolution, Frohn et al. (2012) and McCarthy et al. (2015) 

agreed that high spatial resolution imagery is a key component to take into 

account when classifying wetlands at a local scale. Here, both sensors achieved 

similar accuracies, which indicates that for mapping Andean wetlands, a spatial 

resolution of 10 m as provided by Sentinel-2 is adequate. Nevertheless, 

differences in the areas classified as wetlands by the two sensors were up to 

~5-10 ha. WV-2 showed systematically larger estimates of wetland areas than 

S-2. One reason for this could be that WV-2 is capable to identify smaller 

isolated wetland areas because of its higher spatial resolution compared to 

Sentinel-2. 

 

5.2. Prediction of soil moisture by optical sensors 

 

Soil moisture (SM) values for ground samples showed a high variability (CV > 

100%, Table 1) across small distances with hardly any clear gradient. 

Furthermore, the samples were highly skewed (i.e. high presence of small 

values and few large ones), probably due to the small sample size (Hills & 

Reynolds, 1969). This resulted in a low range of observed SM values with the 

potential presence of outliers (Kaleita et al., 2005) in water-saturated areas. In 

our case, the elimination of outliers did not translate into any improvement of the 

models, hence we kept all samples in the model.  

 

Soil moisture is also known to be influenced by seasonal effect. Hills & Reynolds 

(1969) pointed out four decades ago the importance of an adequate sample size 

and the selected seasonal time. Extreme sample periods (e.g. beginning and 
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end of summer) will enhance the sample variability on such environments as 

Andean highlands (Western et al., 2003).  

 

From all tested SM models, S-2 data with all 120 observation reached highest 

accuracies. Applying reference data from all four field sampling dates instead of 

just the beginning and the end of the season improved the accuracies, 

especially in terms of R² (from 0.51 to 0.58), while the difference in terms of 

nRMSE was not pronounced (non-significant differences were found for the 

sample size differences; residuals of the best model can be seen in Fig. A1). S-2 

showed significantly better performance than WV-2 for predicting SM (α = 0.05). 

We relate this to S-2’s two bands in the SWIR which were found to have a high 

importance for estimating SM (see Table A1 for variable importance of PLSR). 

The importance of the SWIR region to estimate SM has been stated in many 

earlier studies (e.g. Chen et al., 2014; Harris et al., 2006; Kaleita et al., 2005; 

Wang et al., 2008). Surprisingly, even when using only bands in the VIS and 

NIR spectral regions, S-2 still obtained higher performances than WV-2. This is 

maybe due the higher spectral resolution of S-2 which features bands with a 

narrower spectral range than WV2, and hence might be able to depict more 

detailed spectral information related to SM. 

 

The bootstrap validation of the selected model showed normal distributions or 

R², nRMSE and bias values, with a systematic tendency to underestimate higher 

values of SM. This behaviour is usual in this kind of models, where optical 

sensors are not able to differentiate properly gradients of high or saturated 

values of SM. Some earlier studies consequently masked these areas out for 

the analysis (e.g. Sadeghi et al., 2017). Fig. 5 shows that the highest 
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uncertainties in terms of a high coefficient of variation of SM predictions were 

observed in areas with low SM values. We assume that this relates to the fact 

that in the examined Andean wetlands, the vegetation cover is the key-indicator 

for the estimation of SM with areas showing a higher vegetation cover typically 

being located at more humid areas. Nevertheless, the significant difference 

between S-2 and WV-2 shows that the SWIR information is key when accurately 

estimating SM in areas with similar plant cover but differing SM values. 

According to Muller & Decamps (2011) and Kaleita et al. (2005), drier soils tend 

to present erratic reflectance that complicate an accurate SM prediction. This 

effect may have been amplified in our case by the bias toward lower SM values 

in the field observations which is likely to also increase the variability of the 

observed reflectance matching a low SM situation in the field. In future studies, it 

should be ensured that the full range of SM values is sampled in a more or less 

balanced way.  

 

5.3 Potential of the examined sensor systems for operational monitoring of 

Andean wetlands in the framework of the Chilean National Wetland Inventory. 

 

Chile has an historical deficit of ecological information about its wetlands, with 

Andean high altitude wetlands being one of the least studied wetland 

ecosystems (Cepeda-Pizzaro & Pola, 2013; Squeo et al., 2006). Even though 

Chile joined the Ramsar convention already in 1981, the first general 

classification and detection of national wetlands within the framework of the 

National Wetland Inventory (MMA-Centro de Ecología Aplicada, 2011) was only 

conducted in 2011. This inventory was carried using Landsat imagery, where 

water bodies, vegetated areas and vegetation with visible water were classified 
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by using the normalized difference water index (NWI) and the normalized 

vegetation index (NDVI). Validation was carried out by means of two sources of 

information: 1) a water bodies layer elaborated by the military geographical 

institute (Instituto Geográfico Militar (IGM)), with a scale of 1:50,000, and 2) with 

GIS information created by the Ministry of Environment in the northern area, by 

using Landsat imagery and field information. Hence, the current inventory 

methodology is not exhaustive and it does not use reliable validation data, which 

may hamper a proper monitoring and conservation of these ecosystems.  

 

Here, we proposed the use of optical Sentinel-2 data has a reliable alternative 

for Andean high wetlands monitoring for several reasons: 

 

Sentinel 2 data is free of cost: Hence, the data can be used for long term 

monitoring in conjunction with few sampling efforts, which is an important issue 

for governmental management. The high temporal resolution of Sentinel 2 

furthermore allows for the implementation of an operational monitoring system. 

Reference data could be obtained with a sparse number of field campaign and 

additional high-resolution RGB images (e.g. GoogleEarth) which are nowadays 

freely available.  

 

Spatial resolution: Sentinel-2 has higher spatial resolution than other freely 

available optical RS data with SWIR information, such as Landsat and MODIS, 

and clearly outcompetes other sensor systems used for SM estimations (e.g. 

using passive microwaves with or without thermal information (e.g. Merlin et al., 

2012a; Zribi et al., 2005) and active radar (e.g. Gao et al., 2017)) with regard to 
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spatial detail. For the Andean wetlands this is a key requirement due to their 

small size and often patchy occurrences. 

 

Spectral properties: Sentinel-2 was found to deliver sufficient spectral details to 

adequately identify Andean wetlands from all other land-cover classes in this 

study. The direct comparison to the commercial WorldView-2 data underlined 

the very high radiometric quality of the sensor system. 

 

All these characteristics turn S-2 into a robust alternative for monitoring Andean 

wetlands. The presented classification approach may allow the establishment of 

new datasets to actualize the National Wetland Inventory. The monitoring of soil 

moisture gradients may furthermore support the early detection of impacts 

caused by anthropogenic impacts or global warming. 
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6. CONCLUSIONS 

 

Optical remote sensing was found to be a reliable source of information to map 

Andean wetlands in complicated terrain.  Models based on Sentinel-2 data 

showed high performances for mapping the occurrence and extent of Andean 

wetlands and for estimating soil moisture content within the wetlands. According 

to the aims of the study we can conclude:  

 

The one-class classifier Bias Support Vector Machines was found to deliver 

accurate results for the delineation of Andean wetlands when using single-date 

imagery and minimal field data. Both WorldView-2 and Sentinel-2 imagery 

deliver similar results demonstrating that the separation of the wetlands from the 

landscape background is possible without information from the short-wave 

infrared. This is important when the monitoring of detailed areas is needed. In 

this regard, the use of new generations of very-high resolution imagery, such as 

WorldView-2 and 3, Pleiades or the new Venus, is especially interesting.  

 

To predict soil moisture SWIR information is fundamental, especially in areas 

with similar plant cover but differing soil moisture values. In our study Sentinel-2 

allowed the monitoring of Andean wetlands with sufficient accuracy. It could 

hence be used for monitoring and management purposes, particularly in 

environments where the size of some of the wetlands are too small for the use 

of traditional passive microwaves-thermal and active radar approaches. 

 

The presented approach and results may be of high importance for the 

monitoring and management of Andean wetlands in Chile in a local and regional 
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scale, and particularly in areas where the anthropogenic pressures over water 

resources is elevated due to the mining industry. 
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Appendix A. Best model information 

 

 
Fig. A1. Model residuals of the model using all summer season Sentinel-2 data.  
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Table A1. Variable importance of the best model using partial least square regression 

(PLSR). The importances correspond to the model coefficients.  

Band 
Wavelength 

(nm) 
Resolution 

(m) 
Description P-value Sig. level 

B2 490 10 Blue 0.001 * 

B3 560 10 Green 0.139 - 

B4 665 10 Red 1.097e-05 *** 

B5 705 20 IR 7.495e-05 *** 

B6 740 20 IR 5.499e-05 *** 

B7 783 20 IR 0.121 - 

B8 842 10 IR 0.155 - 

B8a 865 20 IR 0.0006 * 

B11 1610 20 SWIR 0.032 * 

B12 2190 20 SWIR 0.648 - 

Significance level: ‘***’ 0.001; ‘**’; 0.01; ‘*’ 0.05 ‘.  
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